Greatest factor of p^6-1

Find the largest positive integer n n that divides p 6 1 p^{6}-1 for all primes p 11 p \ge 11


The answer is 504.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Jul 31, 2019

Note that p 6 1 = ( p 1 ) ( p + 1 ) ( p 2 + p + 1 ) ( p 2 p + 1 ) p^6-1 = (p-1)(p+1)(p^2+p+1)(p^2-p+1) . Let p 11 p \ge 11 be prime:

  • Then p p is odd, so p 1 , p + 1 p-1,p+1 are successive even numbers, and hence one is a multiple of 4 4 . Thus p 6 1 p^6-1 is a multiple of 8 8 .
  • If p 1 ( m o d 3 ) p \equiv 1 \pmod{3} then p 1 p-1 and p 2 + p + 1 p^2+p+1 are both multiples of 3 3 . If p 2 ( m o d 3 ) p \equiv 2 \pmod{3} then p + 1 p+1 and p 2 p + 1 p^2-p+1 are both multiples of 3 3 . Thus p 6 1 p^6-1 is a multiple of 9 9 .
  • Since p p and 7 7 are coprime, p 6 1 p^6-1 is a multiple of 7 7 .

Thus p 6 1 p^6-1 is a multiple of 8 × 9 × 7 = 504 8 \times 9 \times 7 = 504 . Since 1 3 6 1 = 2 3 × 3 2 × 7 × 61 × 157 1 7 6 1 = 2 5 × 3 3 × 7 × 13 × 307 13^6 - 1 \; = \; 2^3 \times 3^2 \times 7 \times 61 \times 157 \hspace{2cm} 17^6 - 1 \; = \; 2^5 \times 3^3 \times 7 \times 13 \times 307 we deduce that 504 \boxed{504} is the largest integer that divides all p 6 1 p^6 - 1 for primes p 11 p \ge 11 .

Firstly we can easily find that n n must have no prime factor p 11 p \ge 11 because if there is a prime p 1 11 p_1 \ge 11 , then p 1 p 1 6 1 { p }_{ 1 }\nmid { p }_{ 1 }^{ 6 }-1

Next, let n = 2 a 3 b 5 c 7 d n = { 2 }^{ a }{ 3 }^{ b }{ 5 }^{ c }{ 7 }^{ d } that a , b , c , d a , b, c, d are non-negative integers. (or whole numbers) Then, we need to find out the value of a , b , c , d a , b, c, d .

Case 1, a a

By Euler's theorem,

p φ ( 8 ) = p 6 1 ( m o d 8 ) 8 p 6 1 a 3 { p }^{ \varphi \left( 8 \right) }={ p }^{ 6 }\equiv 1 \pmod{8} \rightarrow 8|{ p }^{ 6 }-1\rightarrow a\ge 3

After that we will show that a = 3 a = 3

p 6 1 = ( p 2 1 ) ( p 4 + p 2 + 1 ) 2 p 4 + p 2 + 1 8 p 2 1 { p }^{ 6 }-1=\left( { p }^{ 2 }-1 \right) \left( { p }^{ 4 }+{ p }^{ 2 }+1 \right) \\ \because 2\nmid { p }^{ 4 }+{ p }^{ 2 }+1\\ \therefore 8|{ p }^{ 2 }-1

When p = 11 p = 11 , p 2 1 = 11 2 1 = 120 { p }^{ 2 }-1={ 11 }^{ 2 }-1=120 , which is not divisible by 16 16 . Therefore, a = 3 \boxed { a=3 }

Case 2, b b

By Euler's theorem,

p φ ( 9 ) = p 6 1 ( m o d 9 ) 9 p 6 1 b 2 { p }^{ \varphi \left( 9 \right) }={ p }^{ 6 }\equiv 1 \pmod{9} \rightarrow 9|{ p }^{ 6 }-1\rightarrow b\ge 2

After that we will show that b = 2 b = 2

When p = 29 p = 29 ,

p 6 1 = 29 6 1 2 6 1 63 9 ( m o d 27 ) 27 p 6 1 for some primes p 11 \quad{ p }^{ 6 }-1\\ ={ 29 }^{ 6 }-1\\ \equiv { 2 }^{ 6 }-1\\ \equiv 63\\ \equiv 9 \pmod{27} \\ \therefore 27\nmid { p }^{ 6 }-1 \text{ for some primes } p\ge11

Therefore, b = 2 \boxed { b=2 }

Case 3, c c

When p = 13 p = 13 ,

p 6 1 = 13 6 1 3 6 1 728 3 ( m o d 5 ) 5 p 6 1 for some primes p 11 \quad{ p }^{ 6 }-1\\ ={ 13 }^{ 6 }-1\\ \equiv { 3 }^{ 6 }-1\\ \equiv 728\\ \equiv 3 \pmod{5} \\ \therefore 5\nmid { p }^{ 6 }-1 \text{ for some primes } p\ge11

Therefore, c = 0 \boxed { c=0 }

Case 4, d d

By Euler's theorem,

p φ ( 7 ) = p 6 1 ( m o d 7 ) 7 p 6 1 d 1 { p }^{ \varphi \left( 7 \right) }={ p }^{ 6 }\equiv 1 \pmod{7} \rightarrow 7|{ p }^{ 6 }-1\rightarrow d\ge 1

After that we will show that d = 1 d = 1

When p = 47 p = 47 ,

p 6 1 = 47 6 1 ( 2 ) 6 1 63 14 ( m o d 49 ) 49 p 6 1 for some primes p 11 \quad{ p }^{ 6 }-1\\ ={ 47 }^{ 6 }-1\\ \equiv { \left( -2 \right) }^{ 6 }-1\\ \equiv 63\\ \equiv 14 \pmod{49} \\ \therefore 49\nmid { p }^{ 6 }-1 \text{ for some primes } p\ge11

Therefore, d = 1 \boxed { d=1 }

Finally, we can calculate n n by substituting a , b , c , d a,b,c,d ,

n = 2 a 3 b 5 c 7 d = 2 3 3 2 5 0 7 1 = 504 n = { 2 }^{ a }{ 3 }^{ b }{ 5 }^{ c }{ 7 }^{ d } = { 2 }^{ 3 }{ 3 }^{ 2 }{ 5 }^{ 0 }{ 7 }^{ 1 } = \boxed { 504 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...