Greatest integer.

n + 1 n + n + 2 n \large\ \left\lfloor \sqrt { n } + \frac { 1 }{ \sqrt { n } + \sqrt { n + 2 } } \right\rfloor - \left\lfloor \sqrt { n } \right\rfloor

Evaluate the value of the expression above for positive integer n n .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jun 26, 2018

Consider the following expression.

X = n + 1 n + n + 2 = n + n + 2 n 2 = n + 2 + n 2 = ( n + 2 + n ) 2 2 = 2 n + 2 + 2 n 2 + 2 n 2 < 2 n + 2 + 2 n 2 + 2 n + 1 2 = n + 1 \begin{aligned} X & = \sqrt n + \frac 1{\sqrt n + \sqrt{n+2}} \\ & = \sqrt n + \frac {\sqrt{n+2}-\sqrt n}2 \\ & = \frac {\sqrt{n+2} + \sqrt n}2 \\ & = \frac {\sqrt{(\sqrt{n+2} + \sqrt n)^2}}2 \\ & = \frac {\sqrt{2n+2+2\sqrt{\color{#3D99F6}n^2+2n}}}2 \\ & {\color{#D61F06}<} \frac {\sqrt{2n+2+2\sqrt{\color{#D61F06}n^2+2n+1}}}2 \\ & = \sqrt{n+1} \end{aligned}

So we note that X n < n + 1 n < n + 1 n \lfloor X \rfloor - \lfloor \sqrt n \rfloor < \lfloor \sqrt{n+1} \rfloor - \lfloor \sqrt n \rfloor < \sqrt {n+1} - \sqrt n . Now let us check the maximum value of n + 1 n \sqrt {n+1} - \sqrt n . Let us consider n n is continuous instead being a discreet integer. Then d d n ( n + 1 n ) = 1 2 n + 1 1 2 n < 0 \dfrac d{dn} \left(\sqrt{n+1}-\sqrt n\right) = \dfrac 1{2\sqrt{n+1}} - \dfrac 1{2\sqrt n} < 0 for all n > 0 n > 0 , which is a decreasing function. Therefore the maximum value of n + 1 n = 1 \sqrt {n+1} - \sqrt n = 1 , when n = 0 n=0 . Hence we have n + 1 n + n + 2 n < 1 = 0 \left \lfloor \sqrt n + \dfrac 1{\sqrt n + \sqrt{n+2}}\right \rfloor - \left \lfloor \sqrt n \right \rfloor < 1 = \boxed{0} .

X X
May 27, 2018

1 2018 ! + 2018 ! + 2 \frac { 1 }{ \sqrt { 2018! } + \sqrt { 2018! + 2 } } is too close to 0 that can be ignored,so 2018 ! + 1 2018 ! + 2018 ! + 2 2018 ! = 2018 ! 2018 ! = 0 \ \left\lfloor \sqrt { 2018! } + \frac { 1 }{ \sqrt { 2018! } + \sqrt { 2018! + 2 } } \right\rfloor - \left\lfloor \sqrt { 2018! } \right\rfloor=\left\lfloor \sqrt { 2018! } \right\rfloor-\left\lfloor \sqrt { 2018! } \right\rfloor=0 .

The term n + 1 n + n + 2 \lfloor \sqrt{n}+\frac{1}{\sqrt{n}+\sqrt{n+2}}\rfloor can be written as

n + 1 n + n + 2 = n + n + n + 2 ( n + 2 ) 2 ( n ) 2 = n + n + n + 2 2 = n + n + 2 2 \lfloor \sqrt{n}+\frac{1}{\sqrt{n}+\sqrt{n+2}}\rfloor= \lfloor \sqrt{n}+\frac{-\sqrt{n}+\sqrt{n+2}}{(\sqrt{n+2})^2-(\sqrt{n})^2}\rfloor =\lfloor \sqrt{n}+\frac{-\sqrt{n}+\sqrt{n+2}}{2}\rfloor=\lfloor \frac{\sqrt{n}+\sqrt{n+2}}{2} \rfloor

Then write the main expression as n + 2 + n 2 n + n 2 = a b = m + ϵ 1 n + ϵ 2 \lfloor \frac{\sqrt{n+2}+\sqrt{n}}{2} \rfloor -\lfloor \frac{\sqrt{n}+\sqrt{n}}{2} \rfloor = \lfloor a \rfloor- \lfloor b\rfloor= \lfloor m+\epsilon_1\rfloor -\lfloor n+\epsilon_2\rfloor , where m , n m,n are positive integers and 0 ϵ 1 , ϵ 2 < 1 0 \leq \epsilon_1 , \epsilon_2 <1 .

As the first fact, one can show, is that a b = n + 2 n 2 = 3 1 2 < 0.5 a-b = \lfloor \frac{\sqrt{n+2}-\sqrt{n}}{2} \rfloor = \frac{\sqrt{3}-1}{2} < 0.5 .

Also, 0 ϵ 1 , ϵ 2 < 0.5 \ 0 \leq \epsilon_1 , \epsilon_2 <0.5 , because both a a and b b are results of a real number divided by two, which makes the fractional part less than 0.5 0.5 . Consequently, 0.5 < ϵ 1 ϵ 1 < 0.5 0.5 < 1 ϵ 1 ϵ 1 < 1.5 -0.5<\epsilon_1-\epsilon_1<0.5 \implies 0.5<1-\epsilon_1-\epsilon_1<1.5 .

Finally, in case m = n + 1 m=n+1 then a b = 1 + ϵ 1 ϵ 2 > 0.5 a-b=1+\epsilon_1-\epsilon_2>0.5 , which contradicts the first fact. Therefore, m = n m=n .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...