8 ∫ 1 ∞ x 5 ⌊ x ⌋ d x
If the value of the above integral is equal to b π a , find the value of a + b .
Notation: ⌊ ⋅ ⌋ denotes the floor function .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Relevant wiki: Riemann Zeta Function
Similar solution with @Anthony Muleta 's
I = ∫ 1 ∞ x 5 ⌊ x ⌋ d x = 8 k = 1 ∑ ∞ ∫ k k + 1 x 5 k d x = 8 k = 1 ∑ ∞ 4 x 4 k ∣ ∣ ∣ ∣ k + 1 k = 2 k = 1 ∑ ∞ ( k 4 k − ( k + 1 ) 4 k ) = 2 k = 1 ∑ ∞ ( k 3 1 − ( k + 1 ) 4 k + 1 − 1 ) = 2 k = 1 ∑ ∞ ( k 3 1 − ( k + 1 ) 3 1 + ( k + 1 ) 4 1 ) = 2 ( 1 + k = 1 ∑ ∞ ( k + 1 ) 4 1 ) = 2 ( 1 + k = 2 ∑ ∞ k 4 1 ) = 2 ( 1 + k = 1 ∑ ∞ k 4 1 − 1 ) = 2 k = 1 ∑ ∞ k 4 1 = 2 ζ ( 4 ) = 2 × 9 0 π 4 = 4 5 π 4 Riemann zeta function ζ ( n ) = k = 1 ∑ ∞ k n 1
Therefore, a + b = 4 + 4 5 = 4 9 .
Problem Loading...
Note Loading...
Set Loading...
Let I = ∫ 1 ∞ x 5 ⌊ x ⌋ d x .
⟹ 8 I = 8 ∫ 1 2 x 5 1 d x + 8 ∫ 2 3 x 5 2 d x + 8 ∫ 3 4 x 5 3 d x + . . .
= 8 ∑ n = 1 ∞ ∫ n n + 1 x 5 n d x
= 8 ∑ n = 1 ∞ [ − 4 x 4 n ] x = n x = n + 1
= 2 ∑ n = 1 ∞ ( n 3 1 − ( n + 1 ) 4 n ) .
Now note that ( n + 1 ) 4 n = ( n + 1 ) 4 ( n + 1 ) − 1 = ( n + 1 ) 4 n + 1 − ( n + 1 ) 4 1 = ( n + 1 ) 3 1 − ( n + 1 ) 4 1 .
So the sum is now equal to 2 ∑ n = 1 ∞ ( n 3 1 − ( n + 1 ) 3 1 + ( n + 1 ) 4 1 ) = 2 ∑ n = 1 ∞ n 3 1 − 2 ∑ n = 1 ∞ ( n + 1 ) 3 1 + 2 ∑ n = 1 ∞ ( n + 1 ) 4 1 = 2 ζ ( 3 ) − 2 ( 2 3 1 + 3 3 1 + 4 3 1 + . . . ) + 2 ( 2 4 1 + 3 4 1 + 4 4 1 + . . . ) = 2 ζ ( 3 ) − 2 ( ζ ( 3 ) − 1 ) + 2 ( ζ ( 4 ) − 1 ) = 2 ζ ( 3 ) − 2 ζ ( 3 ) + 2 + 2 ζ ( 4 ) − 2 = 2 ζ ( 4 ) = 2 ⋅ 9 0 π 4 = 4 5 π 4 .
a = 4 , b = 4 5 and a + b = 4 9 .