Greatest Integral

Calculus Level 4

0 2 π [ 2 sin ( x ) ] dx = \large \displaystyle\int_0^{2\pi} [ 2\sin(x) ] \text{dx} =

Details :

  • [ . ] represents greatest integer function .
π \pi 5 π 3 \dfrac{-5\pi}{3} π -\pi 2 π -2\pi 5 π 3 \dfrac{5\pi}{3}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jon Haussmann
Sep 21, 2015

0 2 π 2 sin x d x = 0 π / 6 2 sin x d x + π / 6 5 π / 6 2 sin x d x + 5 π / 6 π 2 sin x d x + π 7 π / 6 2 sin x d x + 7 π / 6 11 π / 6 2 sin x d x + 11 π / 6 2 π 2 sin x d x = 0 π / 6 0 d x + π / 6 5 π / 6 1 d x + 5 π / 6 π 0 d x + π 7 π / 6 1 d x + 7 π / 6 11 π / 6 2 d x + 11 π / 6 2 π 1 d x = 2 π 3 π 6 4 π 3 π 6 = π . \begin{aligned} \int_0^{2 \pi} \lfloor 2 \sin x \rfloor dx &= \int_0^{\pi/6} \lfloor 2 \sin x \rfloor dx + \int_{\pi/6}^{5 \pi/6} \lfloor 2 \sin x \rfloor dx + \int_{5 \pi/6}^{\pi} \lfloor 2 \sin x \rfloor dx \\ &\quad + \int_{\pi}^{7 \pi/6} \lfloor 2 \sin x \rfloor dx + \int_{7 \pi/6}^{11 \pi/6} \lfloor 2 \sin x \rfloor dx + \int_{11 \pi/6}^{2 \pi} \lfloor 2 \sin x \rfloor dx \\ &= \int_0^{\pi/6} 0 dx + \int_{\pi/6}^{5 \pi/6} 1 dx + \int_{5 \pi/6}^{\pi} 0 dx \\ &\quad + \int_{\pi}^{7 \pi/6} -1 dx + \int_{7 \pi/6}^{11 \pi/6} -2 dx + \int_{11 \pi/6}^{2 \pi} -1 dx \\ &= \frac{2 \pi}{3} - \frac{\pi}{6} - \frac{4 \pi}{3} - \frac{\pi}{6} \\ &= -\pi. \end{aligned}

@Jon Haussmann I've converted your report over to this solution.

Calvin Lin Staff - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...