Greatest term!

Algebra Level 4

Consider the binomial expansion ( 2 + 3 x ) 9 (2+3x)^9 . Let P \mathbb{P} denote the largest coefficient of all terms when it's expanded.

If ( 3 2 ) 6 × P = 3 a × b c \left ( \dfrac {3}{2} \right )^6 \times \mathbb{P} = \dfrac {3^a \times b}{c}

for natural numbers a , b , c a,b,c with gcd ( c , 3 ) = gcd ( b , c ) = 1 \text{gcd}(c,3)=\text{gcd}(b,c) = 1 .

What is the value of a + b + c a+b+c ?


The answer is 22.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Bhargav Upadhyay
Mar 3, 2015

( 2 + 3 x ) 9 = 2 9 ( 1 + 3 x 2 ) 9 , T o f i n d g r e a t e s t t e r m o f e x p a n s i o n m e a n s t o f i n d g r e a t e s t v a l u e o f r f o r w h i c h T r + 1 T r . F o r g i v e n e x p a n s i o n , T r + 1 T r = ( 9 + 1 r ) r 3 x 2 = ( 9 + 1 r ) r 3 2 3 2 1 90 9 r 4 r r 6.92 b u t r N , r = 6. T r + 1 = T 7 i s t h e g r e t e s t t e r m . T 7 = c 6 9 1 3 ( 9 4 ) 6 2 9 = 9 × 8 × 7 3 × 2 × 1 3 12 2 12 9 = 3 13 × 7 2 a = 13 , b = 7 , c = 2 a + b + c = 22 { (2+3x) }^{ 9 }={ 2 }^{ 9 }{ (1+\frac { 3x }{ 2 } ) }^{ 9 },\\ To\quad find\quad greatest\quad term\quad of\quad expansion\quad means\\ to\quad find\quad greatest\quad value\quad of\quad 'r'\quad for\quad which\\ { T }_{ r+1 }\ge { T }_{ r }.\\ For\quad given\quad expansion,\\ \frac { { T }_{ r+1 } }{ { T }_{ r } } =\frac { (9+1-r) }{ r } \frac { 3x }{ 2 } =\frac { (9+1-r) }{ r } \frac { 3 }{ 2 } \frac { 3 }{ 2 } \ge 1\\ \therefore 90\quad -\quad 9r\quad \ge \quad 4r\quad \therefore \quad r\quad \le \quad 6.92\\ but\quad r\in N,\quad \therefore \quad r\quad =\quad 6.\\ \therefore \quad { T }_{ r+1 }\quad =\quad { T }_{ 7 }\quad is\quad the\quad gretest\quad term.\\ { T }_{ 7 }\quad =\quad { c }_{ 6 }^{ 9 }\quad { 1 }^{ 3 }{ (\frac { 9 }{ 4 } ) }^{ 6 }{ 2 }^{ 9 }=\quad \frac { 9\times 8\times 7 }{ 3\times 2\times 1 } \frac { { 3 }^{ 12 } }{ { 2 }^{ 12-9 } } =\frac { { 3 }^{ 13 }\times 7 }{ 2 } \\ \therefore \quad a\quad =\quad 13,\quad b\quad =\quad 7,\quad c\quad =\quad 2\\ \therefore a+b+c\quad =\quad 22

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...