⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎧ 2 x 5 + y 9 x 1 5 − y 1 2 = 2 = 1
Given that x and y satisfy the system of equations above, find x + y + x y .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I like the substitution approach, which reveals that we are essentially solving a linear system of equations. You can compare how much simpler this is, to the other methods that were used.
Nice solution! +1
Btw I do not like 41, what is the meaning of it anyways? My favourite number is 7 ;)
Log in to reply
41 was also the answer to this problem:
"Let's play a game of probability"
Relevant wiki: System of Equations - Problem Solving - Basic
2 x 5 + y 9 = 2 ⟹ 5 y + 1 8 x = 4 x y x 1 5 − y 1 2 = 1 ⟹ 1 5 y − 1 2 x = x y Divide Both the equations 5 y + 1 8 x = 6 0 y − 4 8 x ⟹ y = 5 6 x Put this value in any of the two equations 1 5 ⋅ 5 6 x − 1 2 x = x ⋅ 5 6 x ⟹ x = 5 and y = 6 x + y + x y = 5 + 6 + 3 0 = 4 1
⎩ ⎪ ⎨ ⎪ ⎧ 2 x 5 + y 9 = 2 x 1 5 − y 1 2 = 1 × 4 ⟹ x 1 0 + y 3 6 = 8 × 3 ⟹ x 4 5 − y 3 6 = 3 . . . ( 1 ) . . . ( 2 )
( 1 ) + ( 2 ) : x 1 0 + x 4 5 x 5 5 ⟹ x = 1 1 = 1 1 = 5
( 2 ) : 5 1 5 − y 1 2 y 1 2 ⟹ y = 1 = 2 = 6
⟹ x + y + x y = 5 + 6 + 5 × 6 = 4 1
Relevant wiki: System of Equations - Problem Solving - Basic
F r o m ( 1 ) F r o m ( 2 ) F r o m ( 3 ) a n d ( 4 ) ( 6 ) → ( 5 ) ( 7 ) → ( 6 ) ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ∴ ⇒ ∴ ∴ 2 x 5 + y 9 x 1 5 − y 1 2 2 x y 5 y + 2 x y 1 8 x 2 x y 5 y + 1 8 x 5 y + 1 8 x x y 1 5 y − x y 1 2 x x y 1 5 y − 1 2 x 1 5 y − 1 2 x 6 0 y − 4 8 x 5 y + 1 8 x 6 6 x x 1 5 y − 1 2 x 1 5 y 1 5 y 1 5 y 9 0 y 5 y 2 y 2 y x x x x + y + x y = 2 = 1 = 2 = 2 = 4 x y = 1 = 1 = x y = 4 x y = 6 0 y − 4 8 x = 5 5 y = 6 5 y = x y = x y + 1 2 x = x ( y + 1 2 ) = 6 5 y ( y + 1 2 ) = 5 y 2 + 6 0 y = 3 0 y = 6 y = 6 = 6 5 y = 6 5 ( 6 ) = 5 = 6 + 5 + ( 6 ) ( 5 ) = 1 1 + 3 0 = 4 1 ⟶ ( 1 ) ⟶ ( 2 ) ⟶ ( 3 ) ⟶ ( 5 ) ⟶ ( 4 ) ⟶ ( 6 ) ⟶ ( 7 )
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: System of Equations - Problem Solving - Basic
You must like the number 41 :)