Grind Your Systems!

Algebra Level 3

{ 5 2 x + 9 y = 2 15 x 12 y = 1 \large\begin{cases} \begin{aligned} \frac { 5 }{ 2x } +\frac { 9 }{ y } & =2 \\ \frac { 15 }{ x } -\frac { 12 }{ y } & =1 \end{aligned} \end{cases}

Given that x x and y y satisfy the system of equations above, find x + y + x y x+y+xy .


The answer is 41.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Steven Chase
Aug 2, 2016

Relevant wiki: System of Equations - Problem Solving - Basic

You must like the number 41 :)

Moderator note:

I like the substitution approach, which reveals that we are essentially solving a linear system of equations. You can compare how much simpler this is, to the other methods that were used.

Nice solution! +1

Btw I do not like 41, what is the meaning of it anyways? My favourite number is 7 ;)

Armain Labeeb - 4 years, 10 months ago

Log in to reply

41 was also the answer to this problem:

"Let's play a game of probability"

Steven Chase - 4 years, 10 months ago

Log in to reply

Oh right xD what a coincidence

Armain Labeeb - 4 years, 10 months ago
Sabhrant Sachan
Aug 1, 2016

Relevant wiki: System of Equations - Problem Solving - Basic

5 2 x + 9 y = 2 5 y + 18 x = 4 x y 15 x 12 y = 1 15 y 12 x = x y Divide Both the equations 5 y + 18 x = 60 y 48 x y = 6 5 x Put this value in any of the two equations 15 6 5 x 12 x = x 6 5 x x = 5 and y = 6 x + y + x y = 5 + 6 + 30 = 41 \dfrac{5}{2x}+\dfrac{9}{y}=2 \implies 5y+18x=4xy \\ \dfrac{15}{x}-\dfrac{12}{y}=1 \implies 15y-12x=xy \\ \text{ Divide Both the equations } \\ 5y+18x=60y-48x \implies y=\dfrac{6}{5}x \quad \quad \color{#3D99F6}{\text{Put this value in any of the two equations}} \\ 15\cdot \dfrac{6}{5}x-12x=x\cdot \dfrac{6}{5}x \implies x=5 \text{ and } y=6 \\ \boxed{x+y+xy=5+6+30 = 41}

Chew-Seong Cheong
Aug 10, 2016

{ 5 2 x + 9 y = 2 × 4 10 x + 36 y = 8 . . . ( 1 ) 15 x 12 y = 1 × 3 45 x 36 y = 3 . . . ( 2 ) \begin{cases} \dfrac 5{2x} + \dfrac 9y = 2 & \times 4 \implies \dfrac {10}x + \dfrac {36}y = 8 & ...(1) \\ \dfrac {15}x - \dfrac {12}y = 1 & \times 3 \implies \dfrac {45}x - \dfrac {36}y = 3 & ...(2) \end{cases}

( 1 ) + ( 2 ) : 10 x + 45 x = 11 55 x = 11 x = 5 \begin{aligned} (1)+(2): \quad \frac {10}x + \frac {45}x & = 11 \\ \frac {55}x & = 11 \\ \implies x & = 5 \end{aligned}

( 2 ) : 15 5 12 y = 1 12 y = 2 y = 6 \begin{aligned} (2): \quad \frac {15}5 - \frac {12}y & = 1 \\ \frac {12}y & = 2 \\ \implies y & = 6 \end{aligned}

x + y + x y = 5 + 6 + 5 × 6 = 41 \implies x + y + xy = 5 + 6 + 5\times 6 = \boxed{41}

Armain Labeeb
Aug 1, 2016

Relevant wiki: System of Equations - Problem Solving - Basic

5 2 x + 9 y = 2 ( 1 ) 15 x 12 y = 1 ( 2 ) F r o m ( 1 ) 5 y 2 x y + 18 x 2 x y = 2 5 y + 18 x 2 x y = 2 5 y + 18 x = 4 x y ( 3 ) F r o m ( 2 ) 15 y x y 12 x x y = 1 15 y 12 x x y = 1 15 y 12 x = x y ( 5 ) 60 y 48 x = 4 x y ( 4 ) F r o m ( 3 ) a n d ( 4 ) 5 y + 18 x = 60 y 48 x 66 x = 55 y x = 5 y 6 ( 6 ) ( 6 ) ( 5 ) 15 y 12 x = x y 15 y = x y + 12 x 15 y = x ( y + 12 ) 15 y = 5 y ( y + 12 ) 6 90 y = 5 y 2 + 60 y 5 y 2 = 30 y y 2 = 6 y y = 6 ( 7 ) ( 7 ) ( 6 ) x = 5 y 6 x = 5 ( 6 ) 6 x = 5 x + y + x y = 6 + 5 + ( 6 ) ( 5 ) = 11 + 30 = 41 \large \begin{aligned} & & \frac { 5 }{ 2x } +\frac { 9 }{ y } & =2 & \longrightarrow (1) \\ & & \frac { 15 }{ x } -\frac { 12 }{ y } & =1 & \longrightarrow (2) \\ From\, \, \, \, (1) & & \frac { 5y }{ 2xy } +\frac { 18x }{ 2xy } & =2 & \\ & \Rightarrow & \frac { 5y+18x }{ 2xy } & =2 & \\ & \Rightarrow & 5y+18x & =4xy & \longrightarrow (3) \\ From\, \, \, \, (2) & & \frac { 15y }{ xy } -\frac { 12x }{ xy } & =1 & \\ & \Rightarrow & \frac { 15y-12x }{ xy } & =1 & \\ & \Rightarrow & 15y-12x & =xy & \longrightarrow (5) \\ & \Rightarrow & 60y-48x & =4xy & \longrightarrow (4) \\ From\, \, \, \, (3)\, \, \, and\, \, \, (4) & & 5y+18x & =60y-48x & \\ & \Rightarrow & 66x & =55y & \\ & \Rightarrow & x & =\frac { 5y }{ 6 } & \longrightarrow (6) \\ (6)\rightarrow (5) & & 15y-12x & =xy & \\ & \Rightarrow & 15y & =xy+12x & \\ & \Rightarrow & 15y & =x(y+12) & \\ & \Rightarrow & 15y & =\frac { 5y(y+12) }{ 6 } & \\ & \Rightarrow & 90y & =5y^{ 2 }+60y & \\ & \Rightarrow & 5{ y }^{ 2 } & =30y & \\ & \Rightarrow & { y }^{ 2 } & =6y & \\ & \therefore & y & =6 & \longrightarrow (7) \\ (7)\rightarrow (6) & & x & =\frac { 5y }{ 6 } & \\ & \Rightarrow & x & =\frac { 5(6) }{ 6 } & \\ & \therefore & x & =5 & \\ & \therefore & x+y+xy & =6+5+(6)(5) & \\ & & & =11+30 & \\ & & & =\boxed{41} & \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...