Growth rate of ζ ( x ) ( s ) \zeta^{(x)}(s)

Calculus Level 5

Let ζ ( n ) ( s ) \zeta^{(n)} (s) be the n n th derivative of the Riemann Zeta Function. Find

lim x ζ ( x ) ( 2 ) ζ ( x + 1 ) ( 2 ) x \large \displaystyle \lim_{x \rightarrow \infty} \frac{\zeta^{(x)}(2)}{\zeta^{(x+1)}(2)} x

Bonus: Proof that ζ ( x ) ( s ) = O ( x ! ( s 1 ) x ) \zeta^{(x)}(s) = \mathcal{O}{\left(\frac{x!}{(s-1)^x}\right)}

Hint: Consider the Taylor Series of ζ ( s ) \zeta(s) .

This problem is a continuation of this


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Julian Poon
Nov 28, 2018

Lemma: For k Z + k \in \mathbb{Z}^+ , ( 1 ) k ζ ( k ) ( s ) > 0 (-1)^k \zeta^{(k)}(s) > 0 .

Proof: ( 1 ) k ζ ( k ) ( s ) = ( 1 ) k n = 1 ( ln ( n ) ) k n s = n = 1 ln ( n ) k n s \displaystyle (-1)^k \zeta^{(k)}(s) = (-1)^k \sum_{n=1}^{\infty} \frac{(-\ln(n))^k}{n^s} = \sum_{n=1}^{\infty} \frac{\ln(n)^k}{n^s} . Since all the terms are positive, the sum is positive.


The taylor series of ζ \zeta gives:

ζ ( j ) = k = 0 1 k ! ( j s ) k ζ ( k ) ( s ) \zeta(j) = \sum_{k=0}^\infty \frac{1}{k!} (j-s)^k \zeta^{(k)}(s)

This gives

k = 0 ( 1 + δ s ) k k ! ζ ( k ) ( s ) = ζ ( 1 + δ ) , δ > 0 – (1) k = 0 ( 1 s ) k k ! ζ ( k ) ( s ) = lim δ 0 + k = 0 ( 1 + δ s ) k k ! ζ ( k ) ( s ) = lim δ 0 + ζ ( 1 + δ ) – (2) \displaystyle \begin{aligned} \sum_{k=0}^\infty \frac{(1+\delta-s)^k}{k!} \zeta^{(k)}(s) &= \zeta(1+\delta), \quad \delta>0 \quad \text{-- (1)}\\ \sum_{k=0}^\infty \frac{(1-s)^k}{k!} \zeta^{(k)}(s) &= \lim_{\delta \rightarrow 0^+} \sum_{k=0}^\infty \frac{(1+\delta-s)^k}{k!} \zeta^{(k)}(s) \\ &= \lim_{\delta \rightarrow 0^+} \zeta(1+\delta) \quad \text{-- (2)} \end{aligned}

Since ζ ( s ) \zeta(s) diverges at s = 1 s=1 but converges for all s > 1 s>1 , (1) \text{(1)} converges while (2) \text{(2)} diverges. Let a k = ( 1 + δ s ) k k ! ζ ( k ) ( s ) a_k = \frac{(1+\delta-s)^k}{k!} \zeta^{(k)}(s) and b k = ( 1 s ) k k ! ζ ( k ) ( s ) b_k = \frac{(1-s)^k}{k!} \zeta^{(k)}(s) . By the lemma, for s > 1 + δ s>1+\delta , a k , b k > 0 a_k, b_k > 0 for k Z + k \in \mathbb{Z}^+ as all the terms are positive. Hence, (1) \text{(1)} is absolutely convergent.

By the Ratio Test,

lim k a k + 1 a k 1 lim k b k + 1 b k lim k ( 1 + δ s ) ζ ( k + 1 ) ( s ) ( k + 1 ) ζ ( k ) ( s ) 1 lim k ( 1 s ) ζ ( k + 1 ) ( s ) ( k + 1 ) ζ ( k ) ( s ) \displaystyle \begin{aligned} \lim_{k \rightarrow \infty} \frac{a_{k+1}}{a_k} \le &1 \le \lim_{k \rightarrow \infty} \frac{b_{k+1}}{b_k} \\ \lim_{k \rightarrow \infty} \frac{(1+\delta-s)\zeta^{(k+1)}(s)}{(k+1)\zeta^{(k)}(s)} \le &1 \le \lim_{k \rightarrow \infty} \frac{(1-s)\zeta^{(k+1)}(s)}{(k+1)\zeta^{(k)}(s)} \end{aligned}

Limiting δ \delta to 0 + 0^+ , by Squeeze Theorem,

1 = lim k ( 1 s ) ζ ( k + 1 ) ( s ) ( k + 1 ) ζ ( k ) ( s ) = lim k ( k + 1 ) ζ ( k ) ( s ) ( 1 s ) ζ ( k + 1 ) ( s ) lim k ζ ( k ) ( s ) ζ ( k + 1 ) ( s ) = lim k 1 s k + 1 = 0 lim k ζ ( k ) ( s ) k ζ ( k + 1 ) ( s ) = lim k ( k + 1 ) ζ ( k ) ( s ) ζ ( k + 1 ) ( s ) ζ ( k ) ( s ) ζ ( k + 1 ) ( s ) = 1 s 0 = 1 s \displaystyle \begin{aligned} &1 = \lim_{k \rightarrow \infty} \frac{(1-s)\zeta^{(k+1)}(s)}{(k+1)\zeta^{(k)}(s)} = \lim_{k \rightarrow \infty} \frac{(k+1)\zeta^{(k)}(s)}{(1-s)\zeta^{(k+1)}(s)} \\ &\lim_{k \rightarrow \infty} \frac{\zeta^{(k)}(s)}{\zeta^{(k+1)}(s)} = \lim_{k \rightarrow \infty} \frac{1-s}{k+1} = 0 \\ &\lim_{k \rightarrow \infty} \frac{\zeta^{(k)}(s)k}{\zeta^{(k+1)}(s)} = \lim_{k \rightarrow \infty} \frac{(k+1)\zeta^{(k)}(s)}{\zeta^{(k+1)}(s)} - \frac{\zeta^{(k)}(s)}{\zeta^{(k+1)}(s)} \\ &= 1-s-0 = 1-s \end{aligned}

Hence the answer is when s = 2 s=2 , 1 s = 1 1-s = \boxed{-1} .

Otto Bretscher
Nov 29, 2018

It is a well-known result that ζ ( n ) ( 2 ) ( 1 ) n n ! \zeta^{(n)}(2) \sim (-1)^n n! (for n n \to \infty ); the proof is based on Julian's Lemma. It follows that the limit we seek is 1 \boxed{-1} .

The quoted result is a special case of ζ ( n ) ( s ) ( 1 ) n n ! ( s 1 ) n + 1 \zeta^{(n)}(s) \sim (-1)^n \frac{n!}{(s-1)^{n+1}} (for ( s ) > 1 \Re(s) >1 )

Where did you get the results? I want to know more about this.

Julian Poon - 2 years, 6 months ago

Log in to reply

Let me try to find a good reference; I'll be back.

Otto Bretscher - 2 years, 6 months ago

Here is a reference, probably not the best. Consider Theorem 4.

Otto Bretscher - 2 years, 6 months ago

Log in to reply

It linked me to Ramanujan's Notebooks Volume 1 page 224. There Ramanujan proved a stronger result using Euler-Maclaurin, a relatively elementary technique as well, that enabled one to approximate ζ ( n ) ( s ) \zeta^{(n)}(s) arbitrarily close. The growth rate result stated here comes from the integral of the terms of the summation.

Julian Poon - 2 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...