Guess I should call it a 'tetronomial'

Find the coefficient of a 8 b 4 c 9 d 9 { a }^{ 8 }{ b }^{ 4 }{ c }^{ 9 }{ d }^{ 9 } in the expansion ( a b c + b c d + c d a + d a b ) 10 ( { abc+bcd+cda+dab) }^{ 10 } .


The answer is 2520.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Emil Joseph
Apr 24, 2015

( a b c + b c d + c d a + d a b ) 10 = a 10 b 10 c 10 d 10 ( 1 a + 1 b + 1 c + 1 d ) 10 \\ { (abc+bcd+cda+dab) }^{ 10 }\\ =\quad { a }^{ 10 }{ b }^{ 10 }{ c }^{ 10 }{ d }^{ 10 }{ (\frac { 1 }{ a } +\frac { 1 }{ b } +\frac { 1 }{ c } +\frac { 1 }{ d } ) }^{ 10 }\\

So the coefficient of a 8 b 4 c 9 d 9 { a }^{ 8 }{ b }^{ 4 }{ c }^{ 9 }{ d }^{ 9 } is simply the coefficient of ( 1 a ) 2 ( 1 b ) 6 ( 1 c ) 1 ( 1 d ) 1 { (\frac { 1 }{ a } })^{ 2 }{ (\frac { 1 }{ b } })^{ 6 }{ (\frac { 1 }{ c } })^{ 1 }{ (\frac { 1 }{ d } })^{ 1 } in the expansion ( 1 a + 1 b + 1 c + 1 d ) 10 { (\frac { 1 }{ a } +\frac { 1 }{ b } +\frac { 1 }{ c } +\frac { 1 }{ d } ) }^{ 10 }

Hence by Multinomial theorem,

coefficient of ( 1 a ) 2 ( 1 b ) 6 ( 1 c ) 1 ( 1 d ) 1 { (\frac { 1 }{ a } })^{ 2 }{ (\frac { 1 }{ b } })^{ 6 }{ (\frac { 1 }{ c } })^{ 1 }{ (\frac { 1 }{ d } })^{ 1 } = 10 ! 2 ! 6 ! 1 ! 1 ! =\quad \frac { 10! }{ 2!6!1!1! } = 2520 =\boxed { 2520 }

Shandy Rianto
Apr 29, 2015

( a b c + b c d + c d a + d a b ) 10 ( abc + bcd + cda + dab )^{10}

For a m b n c o d p {a}^{m}{b}^{n}{c}^{o}{d}^{p} :

= 10 ! w ! x ! y ! z ! a b c w b c d x c d a y d a b z = \frac {10!}{w!x!y!z!} \cdot{abc}^{w}\cdot{bcd}^{x}\cdot{cda}^{y}\cdot{dab}^{z}

= 10 ! w ! x ! y ! z ! a w + y + z b w + x + z c w + x + y d x + y + z = \frac {10!}{w!x!y!z!} \cdot{a}^{w+y+z}\cdot{b}^{w+x+z}\cdot{c}^{w+x+y}\cdot{d}^{x+y+z}

where

w + x + y + z = 10 w+x+y+z = 10

m = w + y + z m = w+y+z

n = w + x + z n = w+x+z

o = w + x + y o = w+x+y

p = x + y + z p = x+y+z

Solve for a 8 b 4 c 9 d 9 {a}^{8}{b}^{4}{c}^{9}{d}^{9} , we have

8 = w + y + z x = 2 8 = w+y+z \rightarrow x = 2

4 = w + x + z y = 6 4 = w+x+z \rightarrow y = 6

9 = w + x + y z = 1 9 = w+x+y \rightarrow z = 1

9 = x + y + z w = 1 9 = x+y+z \rightarrow w = 1

Hence the coefficient of a 8 b 4 c 9 d 9 {a}^{8}{b}^{4}{c}^{9}{d}^{9} :

= 10 ! 1 ! 2 ! 6 ! 1 ! = \frac {10!}{1!2!6!1!}

= 2520 = \boxed{2520}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...