Guess the Biggest?

Algebra Level 2

Which is the biggest?

a = 2018 + 2016 b = 2019 + 2015 c = 2020 + 2014 \large \begin{aligned} a & =\sqrt{2018}+\sqrt{2016} \\ b & =\sqrt{2019}+\sqrt{2015} \\ c & =\sqrt{2020}+\sqrt{2014} \end{aligned}

a a b b c c

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Jul 21, 2018

Let k = 2017 k=2017 ; then we have:

{ a = k + 1 + k 1 b = k + 2 + k 2 c = k + 3 + k 3 { a 2 = 2 k + 2 k 2 1 b 2 = 2 k + 2 k 2 4 c 2 = 2 k + 2 k 2 9 \begin{cases} a = \sqrt{k+1} + \sqrt{k-1} \\ b = \sqrt{k+2} + \sqrt{k-2} \\ c = \sqrt{k+3} + \sqrt{k-3} \end{cases} \implies \begin{cases} a^2 = 2k + 2\sqrt{k^2-1} \\ b^2 = 2k + 2\sqrt{k^2-4} \\ c^2 = 2k + 2\sqrt{k^2-9} \end{cases}

Therefore, a 2 > b 2 > c 2 a^2 > b^2 > c^2 a > b > c \implies a > b > c , hence a \boxed a is the biggest.

Ram Mohith
Jul 21, 2018

My solution is similar to that of Jian Hau Chooi but it is slightly different .

Let us assume that x = 2017 x = 2017 a = x + 1 + x 1 b = x + 2 + x 2 c = x + 3 + x 3 \begin{aligned} a = \sqrt{x + 1} + \sqrt{x - 1} \\ b = \sqrt{x + 2} + \sqrt{x - 2} \\ c = \sqrt{x + 3} + \sqrt{x - 3} \\ \end{aligned} Now, squaring on both the sides we get : a 2 = x + 1 + x 1 + 2 x 2 1 = 2 x + 2 x 2 1 b 2 = x + 2 + x 2 + 2 x 2 4 = 2 x + 2 x 2 4 c 2 = x + 3 + x 3 + 2 x 2 9 = 2 x + 2 x 2 9 \begin{aligned} a^2 = x + 1 + x - 1 + 2\sqrt{x^2 - 1} = {\color{#20A900}2x + 2}\sqrt{\color{#3D99F6}x^2 - 1} \\ b^2 = x + 2 + x - 2 + 2\sqrt{x^2 - 4} = {\color{#20A900}2x + 2}\sqrt{\color{#E81990}x^2 - 4} \\ c^2 = x + 3 + x - 3 + 2\sqrt{x^2 - 9} = {\color{#20A900}2x + 2}\sqrt{\color{#D61F06}x^2 - 9} \\ \end{aligned} Now, again square root on both the sides : a = 2 x + 2 x 2 1 b = 2 x + 2 x 2 4 c = 2 x + 2 x 2 9 \begin{aligned} a = \sqrt{{\color{#20A900}2x + 2}\sqrt{\color{#3D99F6}x^2 - 1}} \\ b = \sqrt{{\color{#20A900}2x + 2}\sqrt{\color{#E81990}x^2 - 4}} \\ c = \sqrt{{\color{#20A900}2x + 2}\sqrt{\color{#D61F06}x^2 - 9}} \\ \end{aligned} Now, the g r e e n p a r t \color{#20A900}green~part is same for a , b , c a,b,c but they differ in the inside square root part. We also know that if the number in the inner square root is less than the number as a whole is larger . x 2 1 > x 2 4 > x 2 9 a > b > c \begin{aligned} \sqrt{\color{#3D99F6}x^2 - 1} > \sqrt{\color{#E81990}x^2 - 4} > \sqrt{\color{#D61F06}x^2 - 9} \\ \implies a > b > c \quad \quad \quad \quad \\ \end{aligned}

a \therefore a is the largest number.

Naren Bhandari
Jul 21, 2018

Notice that a 2016 b 2015 = 2018 2019 < 1 a 2016 < b 2015 a b = 2016 2015 > 0 a > b \dfrac{a -\sqrt{2016}}{b-\sqrt {2015}} = \dfrac{\sqrt{2018}}{\sqrt{2019}} < 1 \implies a -\sqrt{2016} < b -\sqrt{2015} \\\implies a - b = \sqrt{2016} -\sqrt{2015} > 0 \implies \boxed{a > b} Further, b 2015 c 2014 = 2019 2020 < 1 b 2015 < c 2014 b c = 2015 2014 > 0 b > c \dfrac{b - \sqrt{2015} }{c - \sqrt{2014}} =\dfrac{\sqrt{2019}}{\sqrt{2020}} < 1 \implies b - \sqrt{2015} < c - \sqrt{2014} \\ b-c = \sqrt{2015} -\sqrt{2014} >0 \implies \boxed{b> c} Eventually, a > b , b > c a > c a > b > c a > b , b > c \implies a> c \\\boxed{\therefore a > b > c} Thus, a a is greatest among them.

Jian Hau Chooi
Jul 21, 2018

For n k 0 n \geq k \geq 0 , r = n + k + n k r 2 = 2 n + 2 n 2 k 2 r 1 k \large \begin{aligned} r &= \sqrt{n+k}+\sqrt{n-k} \\ r^2 &= 2n+2\sqrt{n^2-k^2} \ \ \rightarrow\ \ \ r\propto\frac{1}{k} \end{aligned}

By taking n = 2017 n=2017 : k = 1 , a = 2018 + 2016 k = 2 , b = 2019 + 2015 k = 3 , c = 2020 + 2014 \begin{aligned} k &= 1,\ \ a=\sqrt{2018}+\sqrt{2016} \\ k &= 2,\ \ b=\sqrt{2019}+\sqrt{2015} \\ k &= 3,\ \ c=\sqrt{2020}+\sqrt{2014} \\ \end{aligned}

Hence, we will found that a > b > c a>b>c , and a \boxed a will be the biggest.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...