Guess The Series

Algebra Level 4

If x , y , z x, y, z are real and

4 x 2 + 9 y 2 + 16 z 2 6 x y 12 y z 8 x z = 0 4x^2 + 9y^2 + 16z^2 - 6xy - 12yz - 8xz = 0

then x , y , z x, y, z are in:

(Choose the option that applies to all solutions.)

None of these choices Harmonic Progression Arithmetic Progression Geometric Progression

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Milan Đukić
Apr 2, 2014

I solved like this: ( 2 x 3 y ) 2 = 4 x 2 + 9 y 2 12 x y ( 2 x 4 z ) 2 = 4 x 2 + 16 z 2 16 x z ( 3 y 4 z ) 2 = 9 y 2 + 16 z 2 24 y z (2x-3y)^2=4x^2+9y^2-12xy\\ (2x-4z)^2=4x^2+16z^2-16xz\\ (3y-4z)^2=9y^2+16z^2-24yz

After adding this 3 equations you get:

( 2 x 3 y ) 2 + ( 2 x 4 z ) 2 + ( 3 y 4 z ) 2 = 2 ( 4 x 2 + 9 y 2 + 16 z 2 6 x y 12 y z 8 x z ) (2x-3y)^2+(2x-4z)^2+(3y-4z)^2=2(4x^2+9y^2+16z^2-6xy-12yz-8xz)

From this we get:

( 4 x 2 + 9 y 2 + 16 z 2 6 x y 12 y z 8 x z ) = 1 2 ( ( 2 x 3 y ) 2 + ( 2 x 4 z ) 2 + ( 3 y 4 z ) 2 ) (4x^2+9y^2+16z^2-6xy-12yz-8xz)=\frac{1}{2}((2x-3y)^2+(2x-4z)^2+(3y-4z)^2)

If ( 4 x 2 + 9 y 2 + 16 z 2 6 x y 12 y z 8 x z ) (4x^2+9y^2+16z^2-6xy-12yz-8xz) is zero we get:

1 2 ( ( 2 x 3 y ) 2 + ( 2 x 4 z ) 2 + ( 3 y 4 z ) 2 ) \frac{1}{2}((2x-3y)^2+(2x-4z)^2+(3y-4z)^2) =0

This expression is zero only when all summands are zero. And from this we get:

2 x = 3 y = 4 z ( x , 2 3 x , 1 2 x ) 2x=3y=4z \Rightarrow (x,\frac{2}{3}x,\frac{1}{2}x) so this is harmonic progression...

How did u get that?

Andiswa Ngcobo - 7 years, 2 months ago
Vishal Sharma
Mar 25, 2014

Rearranging the equation we get, ( 2 x 3 y ) 2 2 + ( 2 x 4 z ) 2 2 + ( 3 y 4 z ) 2 2 = 0 \quad \frac { { (2x-3y) }^{ 2 } }{ 2 } +\quad \frac { { (2x-4z) }^{ 2 } }{ 2 } +\quad \frac { { (3y-4z) }^{ 2 } }{ 2 } =\quad 0

Hence the solution of above equation will be: 2 x = 3 y = 4 z 2x\quad =\quad 3y\quad =\quad 4z\quad

Therefore x,y,z x , 2 x 3 , x 2 \Rightarrow \quad x,\quad \frac { 2x }{ 3 } ,\frac { x }{ 2 }

Clearly in harmonic progression..

Assume, 2x=a , 3y=b , 4z=c , then, we have [ a 2 + b 2 + c 2 = a b + b c + c a a^{2} + b^{2} + c^{2} = ab + bc + ca ] and this yields a = b = c .

So, 2x = 3y = 4z \Rightarrow x = k 2 \frac{k}{2} , y = k 3 \frac{k}{3} , z = k 4 \frac{k}{4} , for any real k .

Cleary, 2 k \frac{2}{k} , 3 k \frac{3}{k} , 4 k \frac{4}{k} are in AP
\Rightarrow k 2 \frac{k}{2} , k 3 \frac{k}{3} , k 4 \frac{k}{4} are in HP
i.e., x, y, z are in HP.

Abhimanyu Singh - 7 years, 2 months ago

EXcept for the part where I multiplied the entire equation by 2 and then factorized it...did it the same way!!!

Tanya Gupta - 7 years, 2 months ago

true

Anirudha Nayak - 7 years, 2 months ago
Moshiur Mission
Mar 31, 2014

assume 2x=a, 3y=b & 4z =c so the equation is a^2 + b^2 + c^2 -ab -bc -ca =0 or (a + b + c) (a^2 + b^2 + c^2 -ab -bc -ca) = 0 or a^3 + b^3 + c^3 - 3abc =0 or a^2/bc + b^2/ca + c^2/ab =3 is a HP

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...