Guess who's back?!

Algebra Level 5

Consider the following system of equations:

2 a + 3 b c + d + 2 e = 9 2a + 3b - c + d + 2e = 9

a + b c = 4 a + b - c = 4

a + 2 d 3 e = 4 a +2d - 3e = 4

b + 2 c d + e = 6 -b + 2c - d + e = -6

a b + d 2 e = 0 a - b + d - 2e = 0

Find the value of 1000 a b c d e \lceil{1000abcde}\rceil .


The answer is 589.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 23, 2014

The system of equations in matrix form is as follows:

[ 2 3 1 1 2 1 1 1 0 0 1 0 0 2 3 0 1 2 1 1 1 1 0 1 2 ] [ a b c d e ] = [ 9 4 4 6 0 ] \begin{bmatrix} 2 & 3 & -1 & 1 & 2 \\ 1 & 1 & -1 & 0 & 0 \\ 1 & 0 & 0 & 2 & -3 \\ 0 & -1 & 2 & -1 & 1 \\ 1 & -1 & 0 & 1 & -2 \end{bmatrix}\begin{bmatrix} a \\ b \\ c \\ d \\ e \end{bmatrix}=\begin{bmatrix} 9 \\ 4 \\ 4 \\ -6 \\ 0 \end{bmatrix}

We can do the elimination (not Euler's here) to find a , b , c , d a, b, c, d and e e .

R 1 : R 2 : R 3 : R 4 : R 5 : [ 2 3 1 1 2 9 1 1 1 0 0 4 1 0 0 2 3 4 0 1 2 1 1 6 1 1 0 1 2 0 ] \begin{matrix} R_1: \\ R_2: \\ R_3: \\ R_4: \\ R_5: \end{matrix} \begin{bmatrix} 2 & 3 & -1 & 1 & 2 & | & 9 \\ 1 & 1 & -1 & 0 & 0 & | & 4 \\ 1 & 0 & 0 & 2 & -3 & | & 4 \\ 0 & -1 & 2 & -1 & 1 & | & -6 \\ 1 & -1 & 0 & 1 & -2 & | & 0 \end{bmatrix}

R 1 + R 5 R 1 : R 3 R 2 : R 3 + 3 R 4 R 3 : R 1 2 R 4 R 4 : R 5 + 2 R 4 R 5 : [ 3 2 1 2 0 9 1 1 1 0 0 4 1 3 6 1 0 14 2 5 5 3 0 21 1 3 4 1 0 12 ] \begin{matrix} R_1+R_5 &\rightarrow R_1: \\ R_3 &\rightarrow R_2: \\ R_3+3R_4 &\rightarrow R_3: \\ R_1-2R_4 &\rightarrow R_4: \\ R_5+2R_4 &\rightarrow R_5: \end{matrix} \begin{bmatrix} 3 & 2 & -1 & 2 & 0 & | & 9 \\ 1 & 1 & -1 & 0 & 0 & | & 4 \\ 1 & -3 & 6 & -1 & 0 & | & -14 \\ 2 & 5 & -5 & 3 & 0 & | & 21 \\ 1 & -3 & 4 & -1 & 0 & | & -12 \end{bmatrix}

R 1 3 R 2 R 1 : R 2 R 5 R 2 : R 3 R 2 R 3 : R 4 2 R 2 R 4 : [ 0 1 2 2 0 3 0 4 5 1 0 16 0 4 7 1 0 18 0 3 3 3 0 13 ] \begin{matrix} R_1-3R_2 &\rightarrow R_1: \\ R_2-R_5 &\rightarrow R_2: \\ R_3-R_2 &\rightarrow R_3: \\ R_4-2R_2 & \rightarrow R_4: \end{matrix} \begin{bmatrix} 0 & -1 & 2 & 2 & 0 & | & -3 \\ 0 & 4 & -5 & 1 & 0 & | & 16 \\ 0 & -4 & 7 & -1 & 0 & | & -18 \\ 0 & 3 & -3 & 3 & 0 & | & 13 \end{bmatrix}

R 3 + R 2 R 1 : R 4 + 3 R 1 R 2 : R 1 R 3 : [ 0 0 2 0 0 2 0 0 3 9 0 4 0 1 2 2 0 3 ] \begin{matrix} R_3+R_2 &\rightarrow R_1: \\ R_4+3R_1 &\rightarrow R_2: \\ R_1 &\rightarrow R_3: \\ \end{matrix} \begin{bmatrix} 0 & 0 & 2 & 0 & 0 & | & -2 \\ 0 & 0 & 3 & 9 & 0 & | & 4 \\ 0 & -1 & 2 & 2 & 0 & | & -3 \end{bmatrix}

From R 1 : 2 c = 2 c = 1 R_1: \quad 2 c = -2 \quad \Rightarrow c = -1

Substituting c = 1 c = -1 in R 2 : 3 ( 1 ) + 9 d = 4 d = 7 9 R_2: \quad 3(-1)+9d =4\quad \Rightarrow d = \frac {7}{9}

Substituting c = 1 c = -1 and d = 7 9 d = \frac {7}{9} in R 2 : R_2:

b + 2 ( 1 ) + 2 ( 7 9 ) = 3 b = 23 9 \quad \quad -b+2(-1)+2(\frac {7}{9}) = -3 \quad \Rightarrow b = \frac {23}{9}

Substituting b = 23 9 b = \frac {23}{9} and c = 1 c = -1 in a + b c = 4 a = 4 9 a+b-c=4 \quad \Rightarrow a = \frac {4}{9}

Substituting the values of b b , c c and d d in b + 2 c d + e = 6 e = 2 3 -b+2c-d+e=-6 \quad \Rightarrow e = -\frac {2}{3}

Therefore, 1000 a b c d e = 1000 ( 4 9 ) ( 23 9 ) ( 1 ) ( 7 9 ) ( 2 3 ) = 588.9346136 = 589 \lceil 1000abcde \rceil = \lceil 1000 (\frac {4}{9} )( \frac {23}{9} )(-1) ( \frac {7}{9} )(-\frac {2}{3}) \rceil = \lceil 588.9346136 \rceil = \boxed {589}

Pranjal Jain
Oct 4, 2014

On solving, we will get a = 4 9 , b = 23 9 , c = 1 , d = 7 9 , e = 2 3 a=\frac{4}{9}, b=\frac{23}{9}, c=-1, d=\frac{7}{9}, e=\frac{-2}{3}

abcde comes out to be 0.58893.... a b c d e = 1 \lceil{abcde}\rceil=1 1 × 1000 = 1000 1 \times 1000=\boxed{1000}

What sharky did is first multiplied by 1000 and then used ceil function. So he is getting answer as 589.

how to solve it

Mehul Chaturvedi - 6 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...