Consider the following system of equations:
2 a + 3 b − c + d + 2 e = 9
a + b − c = 4
a + 2 d − 3 e = 4
− b + 2 c − d + e = − 6
a − b + d − 2 e = 0
Find the value of ⌈ 1 0 0 0 a b c d e ⌉ .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
On solving, we will get a = 9 4 , b = 9 2 3 , c = − 1 , d = 9 7 , e = 3 − 2
abcde comes out to be 0.58893.... ⌈ a b c d e ⌉ = 1 1 × 1 0 0 0 = 1 0 0 0
What sharky did is first multiplied by 1000 and then used ceil function. So he is getting answer as 589.
how to solve it
Problem Loading...
Note Loading...
Set Loading...
The system of equations in matrix form is as follows:
⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 2 1 1 0 1 3 1 0 − 1 − 1 − 1 − 1 0 2 0 1 0 2 − 1 1 2 0 − 3 1 − 2 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ a b c d e ⎦ ⎥ ⎥ ⎥ ⎥ ⎤ = ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 9 4 4 − 6 0 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤
We can do the elimination (not Euler's here) to find a , b , c , d and e .
R 1 : R 2 : R 3 : R 4 : R 5 : ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 2 1 1 0 1 3 1 0 − 1 − 1 − 1 − 1 0 2 0 1 0 2 − 1 1 2 0 − 3 1 − 2 ∣ ∣ ∣ ∣ ∣ 9 4 4 − 6 0 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤
R 1 + R 5 R 3 R 3 + 3 R 4 R 1 − 2 R 4 R 5 + 2 R 4 → R 1 : → R 2 : → R 3 : → R 4 : → R 5 : ⎣ ⎢ ⎢ ⎢ ⎢ ⎡ 3 1 1 2 1 2 1 − 3 5 − 3 − 1 − 1 6 − 5 4 2 0 − 1 3 − 1 0 0 0 0 0 ∣ ∣ ∣ ∣ ∣ 9 4 − 1 4 2 1 − 1 2 ⎦ ⎥ ⎥ ⎥ ⎥ ⎤
R 1 − 3 R 2 R 2 − R 5 R 3 − R 2 R 4 − 2 R 2 → R 1 : → R 2 : → R 3 : → R 4 : ⎣ ⎢ ⎢ ⎡ 0 0 0 0 − 1 4 − 4 3 2 − 5 7 − 3 2 1 − 1 3 0 0 0 0 ∣ ∣ ∣ ∣ − 3 1 6 − 1 8 1 3 ⎦ ⎥ ⎥ ⎤
R 3 + R 2 R 4 + 3 R 1 R 1 → R 1 : → R 2 : → R 3 : ⎣ ⎡ 0 0 0 0 0 − 1 2 3 2 0 9 2 0 0 0 ∣ ∣ ∣ − 2 4 − 3 ⎦ ⎤
From R 1 : 2 c = − 2 ⇒ c = − 1
Substituting c = − 1 in R 2 : 3 ( − 1 ) + 9 d = 4 ⇒ d = 9 7
Substituting c = − 1 and d = 9 7 in R 2 :
− b + 2 ( − 1 ) + 2 ( 9 7 ) = − 3 ⇒ b = 9 2 3
Substituting b = 9 2 3 and c = − 1 in a + b − c = 4 ⇒ a = 9 4
Substituting the values of b , c and d in − b + 2 c − d + e = − 6 ⇒ e = − 3 2
Therefore, ⌈ 1 0 0 0 a b c d e ⌉ = ⌈ 1 0 0 0 ( 9 4 ) ( 9 2 3 ) ( − 1 ) ( 9 7 ) ( − 3 2 ) ⌉ = ⌈ 5 8 8 . 9 3 4 6 1 3 6 ⌉ = 5 8 9