∫ 0 2 π sin ( 2 x ) sin ( 3 x ) sin ( 2 5 x ) d x
If the above integral can be expressed as b a , where a and b are coprime positive integers, find a + b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
sin ( 2 x ) sin ( 3 x ) sin ( 2 5 x ) = sin ( 2 x ) 2 sin ( 2 3 x ) cos ( 2 3 x ) sin ( 2 5 x )
= sin ( 2 x ) 2 ( 3 sin ( 2 x ) − 4 sin ( 2 x ) 3 ) cos ( 2 3 x ) sin ( 2 5 x )
= 2 ( 3 − 4 sin ( 2 x ) 2 ) cos ( 2 3 x ) sin ( 2 5 x )
= ( 1 + 2 cos x ) ( 2 cos ( 2 3 x ) sin ( 2 5 x ) )
= ( 1 + 2 cos x ) ( sin 4 x + sin x )
= sin 4 x + sin x + 2 sin 4 x cos x + 2 sin x cos x
= sin 4 x + sin x + sin 5 x + sin 3 x + sin 2 x
⇒ ∫ 0 2 π sin ( 2 x ) sin ( 3 x ) sin ( 2 5 x ) d x
= ∫ 0 2 π ( sin 4 x + sin x + sin 5 x + sin 3 x + sin 2 x ) d x = 1 5 3 8
Problem Loading...
Note Loading...
Set Loading...
I = ∫ 0 2 π sin x / 2 sin 3 x sin 5 x / 2 d x
= ∫ 0 2 π sin x / 2 sin 3 x sin ( 3 x − x / 2 ) d x
= ∫ 0 2 π sin x / 2 sin 3 x ( sin 3 x cos x / 2 − cos 3 x sin x / 2 ) d x
= ∫ 0 2 π sin x / 2 s i n 2 ( 3 x ) cos x d x − ∫ 0 2 π sin ( 3 x ) cos ( 3 x ) d x
For the second part 1 / 2 × ∫ 0 2 π sin ( 6 x ) d x = 1 / 6
Now for the first part: :
∫ 0 2 π sin x / 2 sin x / 2 sin 2 ( 3 x ) cos x / 2 sin x / 2 d x
= ∫ 0 2 π sin 2 ( x / 2 ) sin 2 ( 3 x ) sin x d x
= ∫ 0 2 π 1 − cos x sin 2 ( 3 x ) sin x d x
= ∫ 0 2 π ( 1 − cos x ) ( 1 + cos x ) sin 2 ( 3 x ) sin x ( 1 + cos x ) d x
= ∫ 0 2 π sin 2 ( x ) ( 3 sin ( x ) − 4 sin 3 ( x ) ) 2 sin x ( 1 + cos x ) d x
= ∫ 0 2 π ( 3 − 4 sin 2 x ) 2 sin x ( 1 + cos x ) d x
= ∫ 0 2 π ( 3 sin ( x − 4 ) sin 3 ( x ) ) ( 3 − 4 sin 2 x ) ( 1 + cos x ) d x
= ∫ 0 2 π sin 3 x ( 3 − 2 ( 1 − cos ( 2 x ) ) ) ( 1 + cos x ) d x
= ∫ 0 2 π sin 3 x ( 2 cos ( 2 x ) + 1 ) ( 1 + cos x ) d x
= ∫ 0 2 π sin 3 x ( 2 cos ( 2 x ) cos ( x + 2 ) cos ( 2 x ) + cos x + 1 ) d x
Using product-sum rules of trigonometry :
= ∫ 0 2 π sin 3 x ( cos 3 x + 2 cos 2 x + 2 cos x + 1 ) d x
= ∫ 0 2 π ( sin ( 3 x ) cos ( 3 x ) + 2 sin ( 3 x ) cos ( x ) + 2 sin ( 3 x ) cos ( 2 x ) + sin ( 3 x ) ) d x
Again using product-sum rules of trigonometry :
= ∫ 0 2 π ( 2 sin ( 6 x ) + ( sin ( 4 x ) + sin ( 2 x ) ) + ( sin ( 5 x ) + sin ( x ) ) + sin ( 3 x ) ) d x
Simply integrating we get: 3 0 8 1
Final result is = 3 0 8 1 − 6 1 = 1 5 3 8