Half-angle Identities?

Calculus Level 5

0 π 2 sin ( 3 x ) sin ( 5 x 2 ) sin ( x 2 ) d x \large \int_{0}^{\frac{\pi}{2}}\dfrac{\sin\left(3x\right)\sin\left(\frac{5x}{2}\right)}{\sin\left(\frac{x}{2}\right)} \, dx

If the above integral can be expressed as a b \dfrac{a}{b} , where a a and b b are coprime positive integers, find a + b a+b .


The answer is 53.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kushal Bose
Nov 30, 2016

I = 0 π 2 sin 3 x sin 5 x / 2 sin x / 2 d x I=\int_{0}^{\frac{\pi}{2}} \dfrac{\sin 3x \sin 5x/2 }{\sin x/2} dx

= 0 π 2 sin 3 x sin ( 3 x x / 2 ) sin x / 2 d x =\int_{0}^{\frac{\pi}{2}} \dfrac{\sin 3x \sin (3x-x/2)}{\sin x/2} dx

= 0 π 2 sin 3 x ( sin 3 x cos x / 2 cos 3 x sin x / 2 ) sin x / 2 d x =\int_{0}^{\frac{\pi}{2}} \dfrac{\sin 3x(\sin 3x \cos x/2 - \cos 3x \sin x/2)}{\sin x/2} dx

= 0 π 2 s i n 2 ( 3 x ) cos x sin x / 2 d x 0 π 2 sin ( 3 x ) cos ( 3 x ) d x =\int_{0}^{\frac{\pi}{2}} \dfrac{sin^2(3x) \cos x}{\sin x/2} dx - \int_{0}^{\frac{\pi}{2}} \sin(3x)\cos(3x) dx

For the second part 1 / 2 × 0 π 2 sin ( 6 x ) d x = 1 / 6 1/2 \times \int_{0}^{\frac{\pi}{2}} \sin (6x) dx=1/6

Now for the first part: :

0 π 2 sin 2 ( 3 x ) cos x / 2 sin x / 2 sin x / 2 sin x / 2 d x \int_{0}^{\frac{\pi}{2}} \dfrac{\sin^2(3x) \cos x/2 \sin x/2}{\sin x/2 \sin x/2} dx

= 0 π 2 sin 2 ( 3 x ) sin x sin 2 ( x / 2 ) d x = \int_{0}^{\frac{\pi}{2}} \dfrac{\sin^2(3x) \sin x}{\sin^2(x/2)} dx

= 0 π 2 sin 2 ( 3 x ) sin x 1 cos x d x = \int_{0}^{\frac{\pi}{2}} \dfrac{\sin^2(3x) \sin x}{1-\cos x} dx

= 0 π 2 sin 2 ( 3 x ) sin x ( 1 + cos x ) ( 1 cos x ) ( 1 + cos x ) d x = \int_{0}^{\frac{\pi}{2}} \dfrac{\sin^2(3x) \sin x(1+\cos x)}{(1-\cos x)(1+ \cos x)} dx

= 0 π 2 ( 3 sin ( x ) 4 sin 3 ( x ) ) 2 sin x ( 1 + cos x ) sin 2 ( x ) d x =\int_{0}^{\frac{\pi}{2}} \dfrac{(3 \sin (x)-4\sin^3(x))^2 \sin x (1+\cos x)}{\sin^2(x)} dx

= 0 π 2 ( 3 4 sin 2 x ) 2 sin x ( 1 + cos x ) d x =\int_{0}^{\frac{\pi}{2}} (3-4\sin^2x)^2 \sin x (1+\cos x) dx

= 0 π 2 ( 3 sin ( x 4 ) sin 3 ( x ) ) ( 3 4 sin 2 x ) ( 1 + cos x ) d x =\int_{0}^{\frac{\pi}{2}} (3\sin (x-4)\sin^3(x))(3-4\sin^2x) (1+\cos x) dx

= 0 π 2 sin 3 x ( 3 2 ( 1 cos ( 2 x ) ) ) ( 1 + cos x ) d x =\int_{0}^{\frac{\pi}{2}} \sin 3x(3-2(1-\cos(2x)))(1+\cos x) dx

= 0 π 2 sin 3 x ( 2 cos ( 2 x ) + 1 ) ( 1 + cos x ) d x =\int_{0}^{\frac{\pi}{2}} \sin3x (2 \cos (2x)+1)(1+\cos x) dx

= 0 π 2 sin 3 x ( 2 cos ( 2 x ) cos ( x + 2 ) cos ( 2 x ) + cos x + 1 ) d x =\int_{0}^{\frac{\pi}{2}} \sin3x (2 \cos (2 x) \cos (x +2) \cos (2 x)+ \cos x +1) dx

Using product-sum rules of trigonometry :

= 0 π 2 sin 3 x ( cos 3 x + 2 cos 2 x + 2 cos x + 1 ) d x =\int_{0}^{\frac{\pi}{2}} \sin 3 x(\cos 3x + 2 \cos 2x+ 2 \cos x+1) dx

= 0 π 2 ( sin ( 3 x ) cos ( 3 x ) + 2 sin ( 3 x ) cos ( x ) + 2 sin ( 3 x ) cos ( 2 x ) + sin ( 3 x ) ) d x =\int_{0}^{\frac{\pi}{2}} (\sin(3x) \cos(3x) + 2 \sin(3x)\cos(x) + 2 \sin(3x) \cos(2x) + \sin(3x)) dx

Again using product-sum rules of trigonometry :

= 0 π 2 ( sin ( 6 x ) 2 + ( sin ( 4 x ) + sin ( 2 x ) ) + ( sin ( 5 x ) + sin ( x ) ) + sin ( 3 x ) ) d x =\int_{0}^{\frac{\pi}{2}} (\dfrac{\sin (6x)}{2} + (\sin(4x)+\sin(2x))+(\sin(5x)+\sin(x))+ \sin(3x)) dx

Simply integrating we get: 81 30 \dfrac{81}{30}

Final result is = 81 30 1 6 = 38 15 =\dfrac{81}{30} - \dfrac{1}{6}=\dfrac{38}{15}

Fixed up your LaTeX: about half the time you used sin or cos you missed the \ in front.

Jason Dyer Staff - 4 years, 6 months ago
Ankush Tiwari
Dec 14, 2016

sin ( 3 x ) sin ( 5 x 2 ) sin ( x 2 ) \dfrac{\sin\left(3x\right)\sin\left(\frac{5x}{2}\right)}{\sin\left(\frac{x}{2}\right)} = 2 sin ( 3 x 2 ) cos ( 3 x 2 ) sin ( 5 x 2 ) sin ( x 2 ) = \dfrac{2\sin(\frac{3x}{2})\cos(\frac{3x}{2})\sin(\frac{5x}{2})}{\sin(\frac{x}{2})}

= 2 ( 3 sin ( x 2 ) 4 sin ( x 2 ) 3 ) cos ( 3 x 2 ) sin ( 5 x 2 ) sin ( x 2 ) = \dfrac{2(3\sin(\frac{x}{2})-4\sin(\frac{x}{2})^3)\cos(\frac{3x}{2})\sin(\frac{5x}{2})}{\sin(\frac{x}{2})}

= 2 ( 3 4 sin ( x 2 ) 2 ) cos ( 3 x 2 ) sin ( 5 x 2 ) = 2(3-4\sin(\frac{x}{2})^2)\cos(\frac{3x}{2})\sin(\frac{5x}{2})

= ( 1 + 2 cos x ) ( 2 cos ( 3 x 2 ) sin ( 5 x 2 ) ) = (1+2\cos x)(2\cos(\frac{3x}{2})\sin(\frac{5x}{2}))

= ( 1 + 2 cos x ) ( sin 4 x + sin x ) = (1+2\cos x)(\sin 4x+\sin x)

= sin 4 x + sin x + 2 sin 4 x cos x + 2 sin x cos x = \sin 4x + \sin x + 2\sin 4x \cos x + 2\sin x\cos x

= sin 4 x + sin x + sin 5 x + sin 3 x + sin 2 x = \sin 4x + \sin x + \sin 5x + \sin 3x + \sin 2x

0 π 2 sin ( 3 x ) sin ( 5 x 2 ) sin ( x 2 ) d x \Rightarrow \large \int_{0}^{\frac{\pi}{2}}\dfrac{\sin\left(3x\right)\sin\left(\frac{5x}{2}\right)}{\sin\left(\frac{x}{2}\right)} \, dx

= 0 π 2 ( sin 4 x + sin x + sin 5 x + sin 3 x + sin 2 x ) d x = 38 15 = \large \int_{0}^{\frac{\pi}{2}}( \sin4x + \sin x + \sin5x + \sin3x + \sin2x)\, dx = \frac{38}{15}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...