Half Life of Charge on metal ball.

Let a metal ball of Radius r r is placed in infinite homogeneous conducting medium having dielectric constant k k , resistivity ρ \rho . Let at time t=0 , Q charge is given to ball , then find the half Life of the charge present on sphere.

Inspired from Raghav's Note
It is simple version of that problem.

Yes Answer is independent of Size of ball...

k ρ ϵ ln 3 3 \cfrac { k\rho \epsilon \ln { 3 } }{ 3 } k ρ ϵ ln ( 2 + 2 ) k\rho \epsilon \ln { (2+ } \sqrt { 2 } ) 2 k ρ ϵ ln 2 2k\rho \epsilon \ln { 2 } k ρ ϵ ln 3 k\rho \epsilon \ln { 3 } k ρ ϵ ln 2 2 \cfrac { k\rho \epsilon \ln { 2 } }{ 2 } k ρ ϵ ln 2 k\rho \epsilon \ln { 2 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Karan Shekhawat
Apr 21, 2015

I did in this way....

R e q = r ρ d x 4 π x 2 R e q = ρ 4 π r \displaystyle{{ R }_{ eq }=\int _{ r }^{ \infty }{ \cfrac { \rho dx }{ 4\pi { x }^{ 2 } } } \\ \boxed { { R }_{ eq }=\cfrac { \rho }{ 4\pi r } } }

Now draw it's Eqv. cct. diagram.

Let at t=t , charge on ball is Q q Q-q , then current is I = d q d t I=\cfrac { -dq }{ dt } . Now use ohm's law ::

\displaystyle{I=\cfrac { -dq }{ dt } \\ \Delta V=I\times { R }_{ eq }\\ \left\{ \because \Delta V={ V }_{ r }-{ V }_{ \infty }=\cfrac { Q-q }{ 4\pi \epsilon kr } \right \\ \\ -\left\{ \cfrac { \rho }{ 4\pi r } \right\} \cfrac { dq }{ dt } =\cfrac { Q-q }{ 4\pi \epsilon kr } \\ \Rightarrow \boxed { t=k\epsilon \rho \ln { 2 } } }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...