Half an integral

Calculus Level 2

1 2 1 f ( x ) d x = 1 k f ( x ) d x \frac{1}{2}\int_{1}^{\infty}f(x) \, dx=\int_{1}^kf(x)\, dx

Let f ( x ) = 1 x 2 + 4 x + 4 f(x) =\dfrac1{x^2+4x+4} . Find the value of k k satisfying the equation above.


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sabhrant Sachan
Jun 21, 2016

f ( x ) = 1 x 2 + 4 x + 4 = 1 ( x + 2 ) 2 1 k f ( x ) d x = 1 3 1 k + 2 1 2 1 f ( x ) d x = 1 2 ( 1 3 1 + 2 ) = 1 6 1 6 = 1 3 1 k + 2 k = 4 \quad f(x) = \dfrac{1}{x^2+4x+4} = \dfrac{1}{(x+2)^2} \\ \quad \displaystyle\int_{1}^{k} f(x) \cdot dx = \dfrac{1}{3}-\dfrac{1}{k+2} \\ \quad \dfrac{1}{2}\displaystyle\int_{1}^{\infty} f(x) \cdot dx = \dfrac{1}{2}\left( \dfrac{1}{3}-\dfrac{1}{\infty+2} \right) = \dfrac{1}{6} \\ \quad \dfrac{1}{6} = \dfrac{1}{3}-\dfrac{1}{k+2} \\ \quad \boxed{k=4}

Tarmo Taipale
Jun 21, 2016

1 ( f ( x ) d x ) = lim c 1 c ( 1 x 2 + 4 x + 4 d x ) = lim c 1 c ( 1 ( x + 2 ) 2 d x ) = lim c ( 1 c + 2 + 1 1 + 2 ) = 1 3 \int_{1}^{\infty}(f(x)dx)=\lim_{c \to \infty} \int_{1}^{c}(\frac{1}{x^2+4x+4}dx)=\lim_{c \to \infty} \int_{1}^{c}(\frac{1}{(x+2)^2}dx) =\lim_{c \to \infty}(-\frac{1}{c+2}+\frac{1}{1+2})=\frac{1}{3}

We get

1 k ( f ( x ) d x ) = 1 2 × 1 3 \int_{1}^k(f(x)dx)=\frac{1}{2} \times \frac{1}{3}

1 k ( 1 ( x + 2 ) 2 d x ) = 1 6 \int_{1}^k(\frac{1}{(x+2)^2}dx)=\frac{1}{6}

1 k + 2 + 1 3 = 1 6 -\frac{1}{k+2}+\frac{1}{3}=\frac{1}{6}

1 k + 2 = 1 6 \frac{1}{k+2}=\frac{1}{6}

k + 2 = 6 k+2=6

k = 4 k=\boxed{4}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...