Halves

Calculus Level 5

1 2 1 2 + 1 2 ( 1 2 ) 1 2 + 1 2 1 2 + 1 2 ( 1 2 ) = a b c π \dfrac { 1 }{ 2 } \sqrt { \dfrac { 1 }{ 2 } +\dfrac { 1 }{ 2 } \left (\dfrac { 1 }{ 2 }\right ) } \sqrt { \dfrac { 1 }{ 2 } +\dfrac { 1 }{ 2 } \sqrt { \dfrac { 1 }{ 2 } +\dfrac { 1 }{ 2 } \left (\dfrac { 1 }{ 2 } \right) } } \cdots =\dfrac { a\sqrt { b } }{ c\pi }

The equation above holds true for positive integers a , b a,b and c c with a , c a,c coprime and b b square-free. Find a + b + c a+b+c .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rui-Xian Siew
Mar 25, 2016

L e t θ = π 3 , t h e n cos θ = 1 2 1 2 + 1 2 ( 1 2 ) = 1 2 + 1 2 ( cos θ ) = cos θ 2 H e n c e t h e e x p r e s s i o n b e c o m e s : lim n cos θ cos θ 2 cos θ 4 . . . cos θ 2 n = lim n cos θ cos θ 2 cos θ 4 . . . cos θ 2 n sin θ 2 n sin θ 2 n S i n c e sin θ 2 n cos θ 2 n = 1 2 sin θ 2 n 1 , t h e e x p r e s s i o n i s n o w : lim n sin 2 θ 2 n + 1 sin θ 2 n = lim n sin 2 θ 2 n + 1 sin θ 2 n ( θ 2 n ) ( 2 n θ ) = lim n θ 2 n sin θ 2 n sin 2 θ 2 θ = sin 2 θ 2 θ = 3 3 4 π 3 + 3 + 4 = 10 Let\quad \theta =\cfrac { \pi }{ 3 } \quad ,\quad then\quad \cos { \theta } =\cfrac { 1 }{ 2 } \\ \sqrt { \cfrac { 1 }{ 2 } +\cfrac { 1 }{ 2 } (\cfrac { 1 }{ 2 } ) } =\sqrt { \cfrac { 1 }{ 2 } +\cfrac { 1 }{ 2 } (\cos { \theta } ) } =\cos { \cfrac { \theta }{ 2 } } \\ Hence\quad the\quad expression\quad becomes:\\ \lim _{ n\rightarrow \infty }{ \cos { \theta } \cos { \cfrac { \theta }{ 2 } } \cos { \cfrac { \theta }{ 4 } ...\cos { \cfrac { \theta }{ { 2 }^{ n } } } } } =\lim _{ n\rightarrow \infty }{ \cos { \theta } \cos { \cfrac { \theta }{ 2 } } \cos { \cfrac { \theta }{ 4 } ...\cos { \cfrac { \theta }{ { 2 }^{ n } } } } } \cdot \cfrac { \sin { \cfrac { \theta }{ { 2 }^{ n } } } }{ \sin { \cfrac { \theta }{ { 2 }^{ n } } } } \\ Since\quad \sin { \cfrac { \theta }{ { 2 }^{ n } } } \cos { \cfrac { \theta }{ { 2 }^{ n } } } =\cfrac { 1 }{ 2 } \sin { \cfrac { \theta }{ { 2 }^{ n-1 } } } ,\quad the\quad expression\quad is\quad now:\\ \lim _{ n\rightarrow \infty }{ \cfrac { \sin { 2\theta } }{ { 2 }^{ n+1 }\sin { \cfrac { \theta }{ { 2 }^{ n } } } } } =\lim _{ n\rightarrow \infty }{ \cfrac { \sin { 2\theta } }{ { 2 }^{ n+1 }\sin { \cfrac { \theta }{ { 2 }^{ n } } } } } (\cfrac { \theta }{ { 2 }^{ n } } )(\cfrac { { 2 }^{ n } }{ \theta } )=\lim _{ n\rightarrow \infty }{ \cfrac { \cfrac { \theta }{ { 2 }^{ n } } }{ \sin { \cfrac { \theta }{ { 2 }^{ n } } } } } \cdot \cfrac { \sin { 2\theta } }{ { 2 }\theta } =\cfrac { \sin { 2\theta } }{ { 2 }\theta } =\cfrac { 3\sqrt { 3 } }{ 4\pi } \\ \therefore \boxed { 3+3+4=10 }

Chew-Seong Cheong
Sep 19, 2018

Similar solution with @Rui-Xian Siew's

Let the infinite product be P P . Considering the identity: cos θ = 2 cos 2 θ 2 1 \cos \theta = 2 \cos^2 \frac \theta 2 - 1 cos θ 2 = 1 2 + 1 2 cos θ \implies \cos \frac \theta 2 = \sqrt{\frac 12 + \frac 12 \cos \theta} . Then, we have:

P = 1 2 1 2 + 1 2 1 2 1 2 + 1 2 1 2 + 1 2 1 2 Since cos π 3 = 1 2 = cos π 3 cos π 2 3 cos π 2 2 3 = lim n k = 0 n cos π 2 k 3 = lim n sin π 2 n 3 cos π 2 n 3 sin π 2 n 3 k = 0 n 1 cos π 2 k 3 = lim n sin π 2 n 1 3 cos π 2 n 1 3 2 sin π 2 n 3 k = 0 n 2 cos π 2 k 3 = lim n sin π 2 n 2 3 cos π 2 n 2 3 2 2 sin π 2 n 3 k = 0 n 3 cos π 2 k 3 = = lim n sin 2 π 3 2 n + 1 sin π 2 n 3 = lim n 1 2 sin 2 π 3 ( π 3 sin π 2 n 3 π 2 n 3 ) 1 Note that lim x 0 sin x x = 1 = 3 3 4 π \begin{aligned} P & = \frac 12 \cdot \sqrt{\frac 12 + \frac 12 \cdot \frac 12} \cdot \sqrt{\frac 12 + \frac 12 \sqrt{\frac 12 + \frac 12 \cdot \frac 12}} \cdots & \small \color{#3D99F6} \text{Since }\cos \frac \pi 3 = \frac 12 \\ & = \cos \frac \pi 3 \cdot \cos \frac \pi{2\cdot 3} \cdot \cos \frac \pi{2^2 \cdot 3} \cdots \\ & = \lim_{n \to \infty} \prod_{k=0}^n \cos \frac \pi{2^k \cdot 3} \\ & = \lim_{n \to \infty} \frac {\sin \frac \pi{2^n \cdot 3} \cos \frac \pi{2^n \cdot 3}}{\sin \frac \pi{2^n \cdot 3}}\prod_{k=0}^{n-1} \cos \frac \pi{2^k \cdot 3} \\ & = \lim_{n \to \infty} \frac {\sin \frac \pi{2^{n-1} \cdot 3} \cos \frac \pi{2^{n-1} \cdot 3}}{2 \sin \frac \pi{2^n \cdot 3}}\prod_{k=0}^{n-2} \cos \frac \pi{2^k \cdot 3} \\ & = \lim_{n \to \infty} \frac {\sin \frac \pi{2^{n-2} \cdot 3} \cos \frac \pi{2^{n-2} \cdot 3}}{2^2 \sin \frac \pi{2^n \cdot 3}}\prod_{k=0}^{n-3} \cos \frac \pi{2^k \cdot 3} \\ & = \ \cdots \\ & = \lim_{n \to \infty} \frac {\sin \frac {2\pi}3}{2^{n+1} \sin \frac \pi{2^n\cdot 3}} \\ & = \lim_{n \to \infty} \frac 12 \cdot \sin \frac {2\pi}3 \cdot \left(\frac \pi 3 \cdot\color{#3D99F6} \frac {\sin \frac \pi{2^n\cdot 3}}{\frac \pi{2^n \cdot 3}}\right)^{-1} & \small \color{#3D99F6} \text{Note that } \lim_{x\to 0} \frac {\sin x}x = 1 \\ & = \frac {3\sqrt 3}{4\pi} \end{aligned}

Therefore, a + b + c = 3 + 3 + 4 = 10 a+b+c = 3+3+4 = \boxed {10} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...