Halving the Tangent, Twice

Geometry Level 5

If

5 ( cos A + cos C ) + 4 ( cos A cos C + 1 ) = 0 , \large 5(\cos A+\cos C)+4(\cos A\cos C+1)=0,

then find the value of tan ( A 2 ) tan ( C 2 ) \tan\left(\frac A2\right) \tan\left(\frac C2\right) .


The answer is 3.0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Potsawee Manakul
Jul 10, 2015

same as you. P' punpun Lollll.

คลุง แจ็ค - 5 years, 11 months ago

Lovely approach (upvoted!), I only used c o s A = 1 t a n 2 A 2 1 + t a n 2 A 2 cosA=\frac{1-tan^{2}\frac{A}{2}}{1+tan^{2}\frac{A}{2}} and c o s C = 1 t a n 2 C 2 1 + t a n 2 C 2 cosC=\frac{1-tan^{2}\frac{C}{2}}{1+tan^{2}\frac{C}{2}} , basically performing substitution, which is a little cumbersome.

Jessica Wang - 5 years, 11 months ago

It could also be -3.

Joe Mansley - 1 year, 11 months ago
Rohit Ner
Jul 11, 2015

Let tan A 2 tan C 2 = x \tan { \frac { A }{ 2 } } \tan { \frac { C }{ 2 } } =x
tan A 2 tan C 2 = sin A 2 sin C 2 cos A 2 cos C 2 = cos A C 2 cos A + C 2 cos A C 2 + cos A + C 2 cos A C 2 cos A + C 2 cos A C 2 + cos A + C 2 = x cos A C 2 cos A + C 2 = 1 + x 1 x \begin{aligned} \tan { \frac { A }{ 2 } } \tan { \frac { C }{ 2 } } &=\quad \frac { \sin { \frac { A }{ 2 } } \sin { \frac { C }{ 2 } } }{ \cos { \frac { A }{ 2 } } \cos { \frac { C }{ 2 } } } \\ &=\frac { \cos { \frac { A-C }{ 2 } } -\cos { \frac { A+C }{ 2 } } }{ \cos { \frac { A-C }{ 2 } } +\cos { \frac { A+C }{ 2 } } } \\\Rightarrow\frac { \cos { \frac { A-C }{ 2 } } -\cos { \frac { A+C }{ 2 } } }{ \cos { \frac { A-C }{ 2 } } +\cos { \frac { A+C }{ 2 } } } &=x\\ \frac { \cos { \frac { A-C }{ 2 } } }{ \cos { \frac { A+C }{ 2 } } } &=\frac { 1+x }{ 1-x } \end{aligned}
5 ( cos A + cos C ) + 4 ( cos A cos C + 1 ) = 10 cos A + C 2 cos A C 2 + 4 ( 1 2 ( cos ( A + C ) + cos ( A C ) ) + 1 ) = 10 cos A + C 2 cos A C 2 + 4 ( 1 2 ( 2 cos 2 A + C 2 + 2 cos 2 A C 2 2 ) + 1 ) = 10 cos A + C 2 cos A C 2 + 4 ( cos 2 A + C 2 + cos 2 A C 2 ) = cos A + C 2 cos A C 2 [ 10 + 4 ( cos A + C 2 cos A C 2 + cos A C 2 cos A + C 2 ) ] 5(\cos A+\cos C)+4(\cos A\cos C+1) \\=10\cos { \frac { A+C }{ 2 } } \cos { \frac { A-C }{ 2 } } +4\left( \frac { 1 }{ 2 } \left( \cos { \left( A+C \right) } +\cos { \left( A-C \right) } \right) +1 \right) \\ =10\cos { \frac { A+C }{ 2 } } \cos { \frac { A-C }{ 2 } } +4\left( \frac { 1 }{ 2 } \left( 2\cos ^{ 2 }{ \frac { A+C }{ 2 } } +2\cos ^{ 2 }{ \frac { A-C }{ 2 } } -2 \right) +1 \right) \\ =10\cos { \frac { A+C }{ 2 } } \cos { \frac { A-C }{ 2 } } +4\left( \cos ^{ 2 }{ \frac { A+C }{ 2 } } +\cos ^{ 2 }{ \frac { A-C }{ 2 } } \right) \\ =\cos { \frac { A+C }{ 2 } } \cos { \frac { A-C }{ 2 } } \left[ 10+4\left( \frac { \cos { \frac { A+C }{ 2 } } }{ \cos { \frac { A-C }{ 2 } } } +\frac { \cos { \frac { A-C }{ 2 } } }{ \cos { \frac { A+C }{ 2 } } } \right) \right] cos A + C 2 cos A C 2 [ 10 + 4 ( cos A + C 2 cos A C 2 + cos A C 2 cos A + C 2 ) ] = 0 [ 10 + 4 ( cos A + C 2 cos A C 2 + cos A C 2 cos A + C 2 ) ] = 0 10 + 4 ( 1 x 1 + x + 1 + x 1 x ) = 0 10 ( 1 x 2 ) + 4 ( ( 1 x ) 2 + ( 1 + x ) 2 ) = 0 2 x 2 = 18 \begin{aligned} \Rightarrow \cos { \frac { A+C }{ 2 } } \cos { \frac { A-C }{ 2 } } \left[ 10+4\left( \frac { \cos { \frac { A+C }{ 2 } } }{ \cos { \frac { A-C }{ 2 } } } +\frac { \cos { \frac { A-C }{ 2 } } }{ \cos { \frac { A+C }{ 2 } } } \right) \right] &=0\\ \left[ 10+4\left( \frac { \cos { \frac { A+C }{ 2 } } }{ \cos { \frac { A-C }{ 2 } } } +\frac { \cos { \frac { A-C }{ 2 } } }{ \cos { \frac { A+C }{ 2 } } } \right) \right] &=0\\ 10+4\left( \frac { 1-x }{ 1+x } +\frac { 1+x }{ 1-x } \right) &=0\\ 10\left( 1-{ x }^{ 2 } \right) +4\left( { \left( 1-x \right) }^{ 2 }+{ \left( 1+x \right) }^{ 2 } \right) &=0\\ 2{ x }^{ 2 }&=18 \end{aligned}
x = 3 \Huge \color{#3D99F6}{\Rightarrow x=\boxed{3}}


Shivamani Patil
Jul 12, 2015

5 ( cos A + cos C ) + 4 ( cos A cos C + 1 ) = 5 ( cos A + 1 ) ( cos B + 1 ) ( cos A cos C + 1 ) = 0 5\left( \cos { A } +\cos { C } \right) +4\left( \cos { A } \cos { C } +1 \right) =5\left( \cos { A } +1 \right) \left( \cos { B } +1 \right) -\left( \cos { A } \cos { C } +1 \right) =0

5 ( cos A + 1 ) ( cos B + 1 ) = ( cos A cos C + 1 ) \Rightarrow 5\left( \cos { A } +1 \right) \left( \cos { B } +1 \right) =\left( \cos { A } \cos { C } +1 \right) .

cos 2 A 2 cos 2 C 2 = ( cos A cos C + 1 ) 20 ( 1 ) \Rightarrow \cos ^{ 2 }{ \frac { A }{ 2 } } \cos ^{ 2 }{ \frac { C }{ 2 } } =\frac { \left( \cos { A } \cos { C } +1 \right) }{ 20 } \longrightarrow (1)

( 1 sin 2 A 2 ) ( 1 sin 2 C 2 ) = 1 sin 2 A 2 sin 2 C 2 + sin 2 C 2 sin 2 A 2 \left( 1-\sin ^{ 2 }{ \frac { A }{ 2 } } \right) \left( 1-\sin ^{ 2 }{ \frac { C }{ 2 } } \right) =1-\sin ^{ 2 }{ \frac { A }{ 2 } } -\sin ^{ 2 }{ \frac { C }{ 2 } } +\sin ^{ 2 }{ \frac { C }{ 2 } } \sin ^{ 2 }{ \frac { A }{ 2 } }

sin 2 C 2 sin 2 A 2 = ( cos A cos C + 1 ) 20 1 + sin 2 A 2 + sin 2 C 2 = ( cos A cos C + 1 ) 10 ( cos A + cos C ) 20 ( 2 ) \Rightarrow \sin ^{ 2 }{ \frac { C }{ 2 } } \sin ^{ 2 }{ \frac { A }{ 2 } } =\frac { \left( \cos { A } \cos { C } +1 \right) }{ 20 } -1+\sin ^{ 2 }{ \frac { A }{ 2 } } +\sin ^{ 2 }{ \frac { C }{ 2 } } =\frac { \left( \cos { A } \cos { C } +1 \right) -10(\cos { A } +\cos { C } ) }{ 20 } \longrightarrow (2)

( 1 ) ( 2 ) = ( tan C 2 tan A 2 ) 2 = ( cos A cos C + 1 ) 10 ( cos A + cos C ) ( cos A cos C + 1 ) = 1 10 ( cos A + cos C ) ( cos A cos C + 1 ) \frac { (1) }{ (2) } ={ \left( \tan { \frac { C }{ 2 } } \tan { \frac { A }{ 2 } } \right) }^{ 2 }=\frac { \left( \cos { A } \cos { C } +1 \right) -10(\cos { A } +\cos { C } ) }{ \left( \cos { A } \cos { C } +1 \right) } =1-\frac { 10(\cos { A } +\cos { C } ) }{ \left( \cos { A } \cos { C } +1 \right) }

( 1 ) ( 2 ) = ( tan C 2 tan A 2 ) 2 = ( cos A cos C + 1 ) 10 ( cos A + cos C ) ( cos A cos C + 1 ) = 1 10 ( cos A + cos C ) ( cos A cos C + 1 ) ( 3 ) \frac { (1) }{ (2) } ={ \left( \tan { \frac { C }{ 2 } } \tan { \frac { A }{ 2 } } \right) }^{ 2 }=\frac { \left( \cos { A } \cos { C } +1 \right) -10(\cos { A } +\cos { C } ) }{ \left( \cos { A } \cos { C } +1 \right) } =1-\frac { 10(\cos { A } +\cos { C } ) }{ \left( \cos { A } \cos { C } +1 \right) } \longrightarrow (3)

From given expression

5 ( cos A + cos C ) + 4 ( cos A cos C + 1 ) ( cos A cos C + 1 ) = 4 + 5 ( cos A + cos C ) ( cos A cos C + 1 ) = 0 \frac { 5\left( \cos { A } +\cos { C } \right) +4\left( \cos { A } \cos { C } +1 \right) }{ \left( \cos { A } \cos { C } +1 \right) } =4+\frac { 5\left( \cos { A } +\cos { C } \right) }{ \left( \cos { A } \cos { C } +1 \right) } =0

10 ( cos A + cos C ) ( cos A cos C + 1 ) = 8 ( tan C 2 tan A 2 ) 2 = 1 + 8 = 9 tan C 2 tan A 2 = 3 \Rightarrow \frac { -10\left( \cos { A } +\cos { C } \right) }{ \left( \cos { A } \cos { C } +1 \right) } =8\Rightarrow { \left( \tan { \frac { C }{ 2 } } \tan { \frac { A }{ 2 } } \right) }^{ 2 }=1+8=9\Rightarrow \tan { \frac { C }{ 2 } } \tan { \frac { A }{ 2 } } =3 .

( 3 ) \longrightarrow (3) means 3 3 rd equation just for highlighting.

Lu Chee Ket
Nov 7, 2015

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...