Use the Constraint!

Algebra Level pending

x 3 y + y x 3 2 = 2 x y \large x^3y+y x^3-2=| \sqrt{2-x-y} |

Find all real ( x , y ) (x,y) solutions to the equation above. If your solution set is ( x 1 , y 1 ) (x_1,y_1) ; ( x 2 , y 2 ) (x_2,y_2) ; . . . ( x k , y k ) ...(x_k,y_k) then submit your answer as i k ( x i + y i ) \displaystyle \sum_{i}^{k} \left(x_i+y_i \right) .


The answer is 2.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kushal Bose
May 1, 2017

If the system has real solutions then 2 x y 0 x + y 2 2-x-y \geq 0 \implies x+y \leq 2

Using A.M.-G.M. x + y 2 x y x+y \geq 2 \sqrt{x y} .So, 2 x + y 2 x y x y 1 2 \geq x+y \geq 2 \sqrt{xy} \implies xy \leq 1

Now consider the expression x 3 y + y 3 x = x y ( x 2 + y 2 ) = x y [ ( x + y ) 2 2 x y ] = x y ( x + y ) 2 2 ( x y ) 2 x^3 y+y^3 x=xy(x^2+y^2) \\ = xy[(x+y)^2-2 xy] \\ =xy (x+y)^2-2 (xy)^2

Using the two inequalities x + y 2 x+y \leq 2 and x y 1 xy \leq 1

x y ( x + y ) 2 1 × 4 = 4 xy (x+y)^2 \leq 1 \times 4=4 and 2 ( x y ) 2 2 2 (xy)^2 \leq 2

So, x y ( x + y ) 2 2 ( x y ) 2 2 x 3 y + y 3 x 2 x 3 y + y 3 x 2 0 xy (x+y)^2-2 (xy)^2 \leq 2 \implies x^3 y+y^3 x \leq 2 \implies x^3 y+y^3 x-2 \leq 0

This says 2 x y 0 | \sqrt{2-x-y}| \leq 0 which is only possible if the equality holds (which is equal to zero).

So,the only solution is x = y = 1 x=y=1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...