Handle with care II

Calculus Level 3

If the closed form of m = 1 n = 0 ( 1 ) n ( 2 m + n ) 2 = π a b ln a a \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \dfrac{(-1)^n}{(2m+n)^2} = \dfrac{\pi^a}{b} - \dfrac{\ln a}{a } where a a and b b are positive integers. Find the value of a + b a+b .

Source : Math facts, facebook page. The idea to tackle this problem is hinted in Handle with care I .


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

S = m = 1 n = 0 ( 1 ) n ( 2 m + n ) 2 = 1 2 2 1 3 2 + 1 4 2 1 5 2 + 1 6 2 for m = 1 + 1 4 2 1 5 2 + 1 6 2 1 7 2 + 1 8 2 for m = 2 + 1 6 2 1 7 2 + 1 8 2 1 9 2 + 1 1 0 2 for m = 3 + = 1 2 2 + 2 4 2 + 3 6 2 + ( 1 3 2 + 2 5 2 + 3 7 2 + ) = m = 1 ( 1 4 m m ( 2 m + 1 ) 2 ) = m = 1 ( 1 4 m 1 2 ( 2 m + 1 ) + 1 2 ( 2 m + 1 ) 2 ) = 1 2 m = 2 ( 1 ) m m + 1 2 m = 1 1 ( 2 m + 1 ) 2 = 1 2 ( 1 m = 1 ( 1 ) m + 1 m ) + 1 2 ( m = 0 1 ( 2 m + 1 ) 2 1 ) = 1 2 ( m = 0 1 ( 2 m + 1 ) 2 m = 1 ( 1 ) m + 1 m ) = 1 2 ( m = 1 1 m 2 1 2 2 m = 1 1 m 2 ln 2 ) = 1 2 ( 3 4 m = 1 1 m 2 ln 2 ) = 1 2 ( 3 4 ζ ( 2 ) ln 2 ) where ζ ( ) denotes the Riemann = 1 2 ( 3 4 × π 2 6 ln 2 ) zeta function and ζ ( 2 ) = π 2 6 . = π 2 16 ln 2 2 \begin{aligned} S & = \sum_{m=1}^\infty \sum_{n=0}^\infty \frac {(-1)^n}{(2m+n)^2} \\ & = \frac 1{2^2} - \frac 1{3^2} + \frac 1{4^2} - \frac 1{5^2} + \frac 1{6^2} - \cdots & \small \blue{\text{for }m=1} \\ & \quad + \frac 1{4^2} - \frac 1{5^2} + \frac 1{6^2} - \frac 1{7^2} + \frac 1{8^2} - \cdots & \small \blue{\text{for }m=2} \\ & \quad + \frac 1{6^2} - \frac 1{7^2} + \frac 1{8^2} - \frac 1{9^2} + \frac 1{10^2} - \cdots & \small \blue{\text{for }m=3} \\ & \quad + \cdots \\ & = \frac 1{2^2} + \frac 2{4^2} + \frac 3{6^2} + \cdots - \left(\frac 1{3^2} + \frac 2{5^2} + \frac 3{7^2} + \cdots \right) \\ & = \sum_{m=1}^\infty \left(\frac 1{4m} - \frac m{(2m+1)^2} \right) \\ & = \sum_{m=1}^\infty \left(\frac 1{4m} - \frac 1{2(2m+1)} + \frac 1{2(2m+1)^2} \right) \\ & = \frac 12 \sum_{m=2}^\infty \frac {(-1)^m}{m} + \frac 12 \sum_{m=1}^\infty \frac 1{(2m+1)^2} \\ & = \frac 12 \left(1 - \sum_{m=1}^\infty \frac {(-1)^{m+1}}{m} \right) + \frac 12 \left(\sum_{m=0}^\infty \frac 1{(2m+1)^2} - 1 \right) \\ & = \frac 12 \left(\red{\sum_{m=0}^\infty \frac 1{(2m+1)^2}} - \blue{\sum_{m=1}^\infty \frac {(-1)^{m+1}}{m}} \right) \\ & = \frac 12 \left(\red{\sum_{m=1}^\infty \frac 1{m^2} - \frac 1{2^2}\sum_{m=1}^\infty \frac 1{m^2}} - \blue{\ln 2} \right) \\ & = \frac 12 \left(\red{\frac 34 \sum_{m=1}^\infty \frac 1{m^2}} - \ln 2 \right) \\ & = \frac 12 \left(\red{\frac 34 \zeta (2)} - \ln 2 \right) & \small \red{\text{where }\zeta(\cdot) \text{ denotes the Riemann}} \\ & = \frac 12 \left(\red{\frac 34 \times \frac {\pi^2}6} - \ln 2 \right) & \small \red{\text{zeta function and }\zeta(2) = \frac {\pi^2}6.} \\ & = \frac {\pi^2}{16} - \frac {\ln 2}2 \end{aligned}

Therefore, a + b = 2 + 16 = 18 a+b=2+16 = \boxed{18} .


Reference: Riemann zeta function

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...