If the closed form of where and are positive integers. Find the value of .
Source : Math facts, facebook page. The idea to tackle this problem is hinted in Handle with care I .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
S = m = 1 ∑ ∞ n = 0 ∑ ∞ ( 2 m + n ) 2 ( − 1 ) n = 2 2 1 − 3 2 1 + 4 2 1 − 5 2 1 + 6 2 1 − ⋯ + 4 2 1 − 5 2 1 + 6 2 1 − 7 2 1 + 8 2 1 − ⋯ + 6 2 1 − 7 2 1 + 8 2 1 − 9 2 1 + 1 0 2 1 − ⋯ + ⋯ = 2 2 1 + 4 2 2 + 6 2 3 + ⋯ − ( 3 2 1 + 5 2 2 + 7 2 3 + ⋯ ) = m = 1 ∑ ∞ ( 4 m 1 − ( 2 m + 1 ) 2 m ) = m = 1 ∑ ∞ ( 4 m 1 − 2 ( 2 m + 1 ) 1 + 2 ( 2 m + 1 ) 2 1 ) = 2 1 m = 2 ∑ ∞ m ( − 1 ) m + 2 1 m = 1 ∑ ∞ ( 2 m + 1 ) 2 1 = 2 1 ( 1 − m = 1 ∑ ∞ m ( − 1 ) m + 1 ) + 2 1 ( m = 0 ∑ ∞ ( 2 m + 1 ) 2 1 − 1 ) = 2 1 ( m = 0 ∑ ∞ ( 2 m + 1 ) 2 1 − m = 1 ∑ ∞ m ( − 1 ) m + 1 ) = 2 1 ( m = 1 ∑ ∞ m 2 1 − 2 2 1 m = 1 ∑ ∞ m 2 1 − ln 2 ) = 2 1 ( 4 3 m = 1 ∑ ∞ m 2 1 − ln 2 ) = 2 1 ( 4 3 ζ ( 2 ) − ln 2 ) = 2 1 ( 4 3 × 6 π 2 − ln 2 ) = 1 6 π 2 − 2 ln 2 for m = 1 for m = 2 for m = 3 where ζ ( ⋅ ) denotes the Riemann zeta function and ζ ( 2 ) = 6 π 2 .
Therefore, a + b = 2 + 1 6 = 1 8 .
Reference: Riemann zeta function