Happy Birthday to me

Algebra Level 3

{ a + b + c + d = 21 a 2 + b 2 + c 2 + d 2 = 13 a 3 + b 3 + c 3 + d 3 = 12 a 4 + b 4 + c 4 + d 4 = 97 \begin{cases} \begin{aligned} a\ + \ b\ +\ c \ + \ d\ & =21 \\ a^2+b^2+c^2+d^2 & =13 \\ a^3+b^3+c^3+d^3 & =12 \\ a^4+b^4+c^4+d^4 & =97 \end{aligned} \end{cases}

If a , b , c , a,b,c, and d d satisfy the system of equations above, find the value of a 5 + b 5 + c 5 + d 5 . a^5+b^5+c^5+d^5.


Note: I was born on 13th December 1997, I've turned 21 years old today.

Try this one:


The answer is -123959.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 13, 2018

Relevant wiki: Newton's Identities

Let P n = a n + b n + c n + d n P_n = a^n+b^n+c^n+d^n , where n n is a positive integer, S 1 = a + b + c + d S_1 = a+b+c+d , S 2 = a b + a c + a d + b c + b d + c d S_2=ab+ac+ad+bc+bd+cd , S 3 = a b c + a b d + a c d + b c d S_3=abc + abd+acd+bcd , and S 4 = a b c d S_4 = abcd . By Newton's sums or Newton's identities,

P 1 = S 1 = 21 P 2 = S 1 P 1 2 S 2 = 21 ( 21 ) 2 S 2 = 13 S 2 = 214 P 3 = S 1 P 2 S 2 P 1 + 3 S 3 = 21 ( 13 ) 214 ( 21 ) + 3 S 3 = 12 S 3 = 1411 P 4 = S 1 P 3 S 2 P 2 + S 3 P 1 4 S 4 = 21 ( 12 ) 214 ( 13 ) + 1411 ( 21 ) 4 S 4 = 97 S 4 = 6751 P 5 = S 1 P 4 S 2 P 3 + S 3 P 2 S 4 P 1 = 21 ( 97 ) 214 ( 12 ) + 1411 ( 13 ) 6751 ( 21 ) = 123959 \begin{aligned} P_1 & = S_1 = 21 \\ P_2 & = S_1P_1 - 2S_2 = 21(21) - 2S_2 = 13 & \small \color{#3D99F6} \implies S_2 = 214 \\ P_3 & = S_1P_2 - S_2P_1 + 3S_3 = 21(13) - 214(21) + 3S_3 = 12 & \small \color{#3D99F6} \implies S_3 = 1411 \\ P_4 & = S_1P_3 - S_2P_2 + S_3P_1 - 4S_4 = 21(12) - 214(13) + 1411(21) - 4S_4 = 97 & \small \color{#3D99F6} \implies S_4 = 6751 \\ P_5 & = S_1P_4 - S_2P_3 + S_3P_2 - S_4P_1 = 21(97) - 214(12) + 1411(13) - 6751(21) = \boxed{-123959} \end{aligned}

Mark Hennings
Dec 12, 2018

Since 1 2 ( 2 1 2 13 ) = 214 \tfrac12(21^2 - 13) = 214 , we see that a , b , c , d a,b,c,d satisfy a quartic equation X 4 21 X 3 + 214 X 2 α X + β = 0 X^4 - 21X^3 + 214X^2 - \alpha X + \beta = 0 for some α , β \alpha,\beta to be determined. This means that S n + 4 21 S n + 3 + 214 S n + 2 α S n + 1 + β S n = 0 n Z S_{n+4} - 21S_{n+3} + 214S_{n+2} - \alpha S_{n+1} + \beta S_n \; = \; 0 \hspace{2cm} n \in \mathbb{Z} where S n = a n + b n + c n + d n n Z S_n \; = \; a^n + b^n + c^n + d^n \hspace{2cm} n \in \mathbb{Z} Since S 1 = α β S_{-1} = \tfrac{\alpha}{\beta} , we see that (using the case n = 1 n=-1 ) 12 21 × 13 + 214 × 21 4 α + α = 0 12 - 21 \times 13 + 214 \times21 - 4\alpha + \alpha \; = \; 0 and hence α = 1411 \alpha = 1411 . But (using the case n = 0 n=0 ) 97 21 × 12 + 214 × 13 1411 × 21 + 4 β = 0 97 - 21\times12 + 214\times13 - 1411\times21 + 4\beta \; = \; 0 and hence β = 6751 \beta = 6751 . Thus (putting n = 1 n=1 ) S 5 = 21 S 4 214 S 3 + 1411 S 2 6751 S 1 = 123959 S_5 \; = \; 21S_4 - 214S_3 + 1411S_2 - 6751S_1 \; = \; \boxed{-123959}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...