Happy Birthday, Undertale (9/15/2015)!

Let P ( n ) P(n) denote the product of all positive submultiples of a natural number n . n.

There is a natural number N N satisfying:

{ log 2 N log 2 N ; N 2 60 is a natural number, but N 2 85 is not ; N 379 ( m o d 915 ) ; log N P ( N ) + 915 = 2015. \cases{\left\lfloor \log_{2} N\right\rfloor\neq\log_{2} N; \\ \\ \dfrac{N}{2^{60}}\text{ is a natural number, but }\dfrac{N}{2^{85}} \text{ is not};\\ \\ N\equiv 379 \pmod{915}; \\ \\ \left\lfloor\log_{N} P(N)\right\rfloor+915=2015.}

The smallest value for N N is k = 1 n p k a k , \displaystyle \prod_{k=1}^n {p_k}^{a_k}, such that for all natural numbers k n , k\le n, { p k is a prime; p k 1 < p k , where p 0 = 1 ; a k is a natural number. \cases{p_k \text{ is a prime;}\\\\ p_{k-1}<p_k, \text{ where } p_0=1; \\\\ a_k \text{ is a natural number.}}

Find the value of k = 1 n p k a k . \displaystyle \sum_{k=1}^n p_k a_k.


Notation: \lfloor\cdot\rfloor denotes the floor function .

This problem was created by me, celebrating Undertale 's 2nd anniversary.


The answer is 470.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Sep 15, 2017

If m , n m,n are coprime positive integers, then a positive integer a a divides m n mn if and only if a = b c a = bc where b , c b,c are positive integers where b b divides m m and c c divides n n . Thus P ( m n ) = b m , c n b c = b m b σ 0 ( n ) P ( n ) = P ( m ) σ 0 ( n ) P ( n ) σ 0 ( m ) P(mn) \; = \; \prod_{b|m\,,\,c|n} bc \; = \; \prod_{b|m}b^{\sigma_0(n)}P(n) \; = \; P(m)^{\sigma_0(n)} P(n)^{\sigma_0(m)} where σ 0 ( n ) \sigma_0(n) is the number of divisors of n n . This means that Q ( n ) = P ( n ) 1 σ 0 ( n ) Q(n) = P(n)^{\frac{1}{\sigma_0(n)}} is a multiplicative function. Since Q ( p a ) = ( j = 0 a p j ) 1 a + 1 = p 1 2 a = p a Q(p^a) \; = \; \left(\prod_{j=0}^a p^j\right)^{\frac{1}{a+1}} \; = \; p^{\frac12a} \; = \; \sqrt{p^a} for all primes p p and positive integers a a , we deduce that Q ( n ) = n Q(n) = \sqrt{n} for all n 1 n\ge 1 , and hence P ( n ) = n 1 2 σ 0 ( n ) P(n) = n^{\frac12\sigma_0(n)} . Note that σ 0 ( n ) \sigma_0(n) is even except when n n is a perfect square, and so this formula for P ( n ) P(n) always yields an integer, thankfully!

The last condition tells us that 1 2 σ 0 ( N ) = 1100 \lfloor \tfrac12\sigma_0(N) \rfloor = 1100 , and hence that σ 0 ( N ) = 2200 \sigma_0(N) = 2200 or 2201 2201 . The second condition tells us that the index of 2 2 in N N lies between 60 60 and 84 84 , and hence σ 0 ( N ) \sigma_0(N) is divisible by some integer between 61 61 and 85 85 . There is no such factor of 2200 2200 , and hence σ 0 ( N ) = 2201 = 31 × 71 \sigma_0(N) = 2201 = 31 \times 71 . Thus it follows that N = 2 70 × p 30 N = 2^{70} \times p^{30} for some odd prime p p . This makes the first condition automatically true.

The smallest prime p p for which 2 70 × p 30 379 ( m o d 915 ) 2^{70} \times p^{30} \equiv 379 \pmod{915} is p = 11 p=11 , and hence the answer is 2 × 70 + 11 × 30 = 470 2\times70+11\times30 = \boxed{470} .

A condensed version of my solution! It's really nice and organized :)

Boi (보이) - 3 years, 8 months ago
Boi (보이)
Sep 15, 2017

Define f ( n ) f(n) as the number of positive submultiples of a natural number n . n.

Lemma: P ( N ) = N f ( N ) 2 . P(N)=N^{\frac{f(N)}{2}}.


Let N = k = 1 m P k A k . \displaystyle N=\prod_{k=1}^m {P_k}^{A_k}.

Let 84 = 2 2 × 3 × 7. ~~~~\small \color{#3D99F6} \text{Let } 84 = 2^2\times3\times7.

.

Then let's enumerate all the submultiples of N , N, with all of them factorized.

2 0 × 3 0 × 7 0 , 2 0 × 3 1 × 7 0 , 2 0 × 3 0 × 7 1 , 2 0 × 3 1 × 7 1 , 2 1 × 3 0 × 7 0 , 2 1 × 3 1 × 7 0 , 2 1 × 3 0 × 7 1 , 2 1 × 3 1 × 7 1 , 2 2 × 3 0 × 7 0 , 2 2 × 3 1 × 7 0 , 2 2 × 3 0 × 7 1 , 2 2 × 3 1 × 7 1 ~~~~\small \color{#3D99F6} 2^0\times3^0\times7^0,~2^0\times3^1\times7^0,~2^0\times3^0\times7^1,~2^0\times3^1\times7^1,~2^1\times3^0\times7^0,~2^1\times3^1\times7^0,~2^1\times3^0\times7^1,~2^1\times3^1\times7^1,~2^2\times3^0\times7^0,~2^2\times3^1\times7^0,~2^2\times3^0\times7^1,~2^2\times3^1\times7^1

.

For some arbitrary natural numbers i m i\le m and j A i , j\le A_i, we will see that P i j {P_i}^j is written exactly f ( N P i A i ) f\left(\dfrac{N}{{P_i}^{A_i}}\right) times.

2 0 × 3 0 × 7 0 , 2 0 × 3 1 × 7 0 , 2 0 × 3 0 × 7 1 , 2 0 × 3 1 × 7 1 , 2 1 × 3 0 × 7 0 , 2 1 × 3 1 × 7 0 , 2 1 × 3 0 × 7 1 , 2 1 × 3 1 × 7 1 , 2 2 × 3 0 × 7 0 , 2 2 × 3 1 × 7 0 , 2 2 × 3 0 × 7 1 , 2 2 × 3 1 × 7 1 ~~~~\small {\color{#3D99F6}2^0}\times{\color{#D61F06}3^0}\times{\color{#EC7300}7^0},~{\color{#3D99F6}2^0}\times{\color{#E81990}3^1}\times{\color{#EC7300}7^0},~{\color{#3D99F6}2^0}\times{\color{#D61F06}3^0}\times{\color{#CEBB00}7^1},~{\color{#3D99F6}2^0}\times{\color{#E81990}3^1}\times{\color{#CEBB00}7^1},~{\color{cyan}2^1}\times{\color{#D61F06}3^0}\times{\color{#EC7300}7^0},~{\color{cyan}2^1}\times{\color{#E81990}3^1}\times{\color{#EC7300}7^0},~{\color{cyan}2^1}\times{\color{#D61F06}3^0}\times{\color{#CEBB00}7^1},~{\color{cyan}2^1}\times{\color{#E81990}3^1}\times{\color{#CEBB00}7^1},~{\color{#20A900}2^2}\times{\color{#D61F06}3^0}\times{\color{#EC7300}7^0},~{\color{#20A900}2^2}\times{\color{#E81990}3^1}\times{\color{#EC7300}7^0},~{\color{#20A900}2^2}\times{\color{#D61F06}3^0}\times{\color{#CEBB00}7^1},~{\color{#20A900}2^2}\times{\color{#E81990}3^1}\times{\color{#CEBB00}7^1}

.

Which means, if we multiply all of them, P i j {P_i}^j will be multiplied f ( N P i A i ) = k = 1 n ( A k + 1 ) A i + 1 f\left(\dfrac{N}{{P_i}^{A_i}}\right)=\dfrac{\displaystyle \prod_{k=1}^n (A_k+1)}{A_i+1} times.

Think N as a factorized form. N P i A i contains everything except P i A i , and therefore, all ( A k + 1 ) ’s are going to be multiplied except ( A i + 1 ) . ~~~~\small \color{#3D99F6} \text{Think }N\text{ as a factorized form. }\dfrac{N}{{P_i}^{A_i}}\text{ contains everything except }{P_i}^{A_i},\text{ and therefore, all }(A_k+1)\text{'s are going to be multiplied except }(A_i+1).

.

So if we multiply all P i j {P_i}^j 's, the product would be ( P i j ) f ( N ) A i + 1 = ( P i f ( N ) A i + 1 ) j . \large ({P_i}^j)^{\frac{f(N)}{A_i+1}}=\left({P_i}^{\frac{f(N)}{A_i+1}}\right)^j.

Remember, k = 1 n ( A k + 1 ) = f ( N ) . ~~~~\small \color{#3D99F6} \text{Remember, }\displaystyle \prod_{k=1}^n (A_k+1)=f(N).

.

Since this applies for all j A i , j\le A_i, if we multiply all the factors with base P i , P_i, the product would be ( P i f ( N ) A i + 1 ) A i ( A i + 1 ) 2 = P i f ( N ) A i 2 . \large \left({P_i}^{\frac{f(N)}{A_i+1}}\right)^{\frac{A_i(A_i+1)}{2}}={P_i}^{\frac{f(N)\cdot A_i}{2}}.

0 + 1 + 2 + + j + ( j + 1 ) + + A i = A i ( A i + 1 ) 2 . ~~~~\small \color{#3D99F6} 0+1+2+~\cdots~+j+(j+1)+~\cdots~+A_i=\dfrac{A_i(A_i+1)}{2}.

.

Since this applies for all i m , i\le m, if we multiply all the submultiples of N , N, (!!!) the product would be P ( N ) = i = 1 m P i f ( N ) A i 2 = i = 1 m ( P i A i ) f ( N ) 2 = N f ( N ) 2 . \displaystyle \large P(N)= \prod_{i=1}^m {P_i}^{\frac{f(N)\cdot A_i}{2}}=\prod_{i=1}^m \left({P_i}^{A_i}\right)^{\frac{f(N)}{2}}=N^{\frac{f(N)}{2}}.

Therefore the lemma is proven.

Now we see that log N P ( N ) = f ( N ) 2 = 2015 915 = 1100. \displaystyle \left\lfloor\log_{N} P(N)\right\rfloor=\left\lfloor\frac{f(N)}{2}\right\rfloor=2015-915=1100.


However, if f ( N ) = 2200 , f(N)=2200, we need 2 k ( 60 k 84 ) 2^{k}~(60\le k \le 84) multiplied inside N N however, 2200 2200 doesn't have a submultiple that is between 61 61 and 85. 85.

CONDITION: N 2 60 is a natural number, but N 2 85 is not. ~~~~\small \color{#3D99F6} \text{CONDITION: }\dfrac{N}{2^{60}}\text{ is a natural number, but }\dfrac{N}{2^{85}} \text{ is not.}

.

So we need f ( N ) = 2201 = 31 × 71 , f(N)=2201=31\times71, so that 2 70 2^{70} is multiplied inside N . N.

Values of N N would be, then, 2 70 × 7 30 , 2 70 × 1 1 30 , 2 70 × 1 3 30 , . . . 2^{70}\times7^{30},~2^{70}\times 11^{30},~2^{70}\times 13^{30},~...

CONDITION: N 379 ( m o d 915 ) ; which implies that N is not a multiple of 3 or 5. ~~~~\small \color{#3D99F6} \text{CONDITION: } N\equiv 379 \pmod{915};\text{ which implies that }N\text{ is not a multiple of 3 or 5.}

.

Note that N 1 ( m o d 3 ) , N 4 ( m o d 5 ) , N 13 ( m o d 61 ) . N\equiv 1\pmod{3},~N\equiv4\pmod{5},~N\equiv13\pmod{61}.

915 = 3 × 5 × 61 ; 379 1 ( m o d 3 ) , 379 4 ( m o d 5 ) , 379 13 ( m o d 61 ) ~~~~\small \color{#3D99F6} 915=3\times5\times61;~379\equiv 1\pmod{3},~379\equiv4\pmod{5},~379\equiv13\pmod{61}


Let N = 2 70 × 7 30 . N=2^{70} \times 7^{30}. Then,

N 4 × 9 6 ( m o d 10 ) ; N 1 ( m o d 5 ) . N \equiv 4\times 9\equiv 6 \pmod{10};~N\equiv1 \pmod{5}.

This is inconsistent with the condition, so this is not the correct answer.

.

Let N = 2 70 × 1 1 30 . N=2^{70} \times 11^{30}. Then,

N 1 ( m o d 3 ) . square of a natural number is always equivalent to 1 in mod 3. N 4 × 1 4 ( m o d 10 ) ; N 4 ( m o d 5 ) . N 2 10 × 12 1 15 ϕ ( 61 ) = 60. 128 × 8 × ( 1 ) 15 121 1 ( m o d 61 ) . 6 × 8 × ( 1 ) 128 6 ( m o d 61 ) . 48 13 ( m o d 61 ) . N \equiv 1 \pmod{3}.~~~~~~\small\color{#3D99F6} \text{square of a natural number is always equivalent to 1 in mod 3.} \\ N \equiv 4\times 1\equiv 4 \pmod{10};~N\equiv4 \pmod{5}. \\ \begin{aligned} N & \equiv 2^{10} \times 121^{15} &&\small\color{#3D99F6} \phi(61)=60.\\ & \equiv 128\times8 \times (-1)^{15} &&\small\color{#3D99F6} 121\equiv -1 \pmod{61}. \\ & \equiv 6\times8\times(-1) &&\small\color{#3D99F6} 128\equiv 6 \pmod{61}. \\ & \equiv -48 \\ & \equiv 13 \pmod{61}. \end{aligned}

This is consistent with all the conditions given, and thus, the minimum value for N N is 2 70 × 1 1 30 . 2^{70}\times 11^{30}.

k = 1 n p k a k = 2 × 70 + 11 × 30 = 470 . \therefore~\displaystyle \sum_{k=1}^n p_k a_k = 2\times70+11\times30=\boxed{470}.

You can also prove the lemma like this If a is a positive submultiple of N, then N/a is also a submultiple of N since N/a is an integer and N/(N/a)=a is also an integer. So letting a be each of f(N) possible submultiples of N, we get f(N) values of N/a which also are the submultiples of N. These f(N) values of N/a are exactly all the submultiples of N and therefore multiplying all these also gives P(N). So P(N) P(N)=((a) (N/a))^(f(N))=N^(f(N)) => P(N)=N^(f(N)/2)

Andres Rico M. III Gonzales - 3 years, 8 months ago

I had to look up the term "submultiple", which I'd never heard of. In future, I'd use the term "divisor" or "factor", which is much more common.

Jon Haussmann - 3 years, 8 months ago

Brilliant problem and solution.

Hana Wehbi - 3 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...