Happy Holiday

Algebra Level 4

Given that one of the root of f ( x ) = x 5 + 9 x 4 + 7 x 3 + 16 x 2 + 6 x + 7 f(x) = x^5+9x^4+7x^3+16x^2+6x+7 can be expressed as:

a 7 2 b 3 c 3 b 3 c 2 3 -a-7\sqrt[3]{\dfrac{2}{b-3\sqrt{c}}} - \sqrt[3]{\dfrac{b-3\sqrt{c}}{2}}\

for positive integers a , b a,b and c c . Calculate a + b + c + 1 a+b+c+1 .


The answer is 100.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

It is given that f ( x ) = x 5 + 9 x 4 + 7 x 3 + 16 x 2 + 6 x + 7 f(x)=x^5+9x^4+7x^3+16x^2+6x+7 . By trial and error, we have:

\(\begin{array} {} f(\sqrt{-1}) & = f(i) & =i+9-7i-16+6i+7 & = 0 \\ f(-\sqrt{-1}) & = f(-i) & =-i+9+7i-16-6i+7 & = 0 \end{array} \)

( x i ) ( x + i ) = x 2 + 1 \Rightarrow (x-i)(x+i)=x^2+1 is a factor of f ( x ) f(x) and f ( x ) = ( x 2 + 1 ) ( x 3 + 9 x 2 + 6 x + 7 ) f(x)=(x^2+1)(x^3+9x^2+6x+7) .

Therefore the real root must come from x 3 + 9 x 2 + 6 x + 7 = 0 x^3+9x^2+6x+7=0 , which we can solved for using Cardano Formula as follows.

x 3 + 9 x 2 + 6 x + 7 = 0 ( x + 3 ) 3 21 ( x + 3 ) + 43 = 0 x^3+9x^2+6x+7=0 \quad \Rightarrow (x+3)^3-21(x+3)+43=0

Let x + 3 = u 3 + v 3 x+3=u^3+v^3 and 3 u v 21 = 0 3uv-21=0 then

x 3 + 9 x 2 + 6 x + 7 = u 3 + v 3 + 3 u v ( u + v ) 21 ( u + v ) + 43 = u 3 + v 3 + ( 3 u v 21 ) ( u + v ) + 43 = u 3 + v 3 + 43 = 0 \begin{aligned} x^3+9x^2+6x+7 & =u^3+v^3+3uv(u+v) -21(u+v)+43 \\ & =u^3+v^3+(3uv-21)(u+v) +43 \\ & = u^3+v^3 + 43 = 0 \end{aligned}

{ u 3 + v 3 = 43 u 3 v 3 = 7 3 = 343 u 3 \Rightarrow \begin{cases} u^3+v^3 =- 43 \\ u^3v^3 = 7^3= 343 \end{cases} \Rightarrow u^3 and v 3 v^3 are roots of z 2 + 43 z + 343 = 0 z^2+43z+343=0

{ u 3 = 43 + 4 3 2 4 ( 343 ) 2 = 43 3 53 2 v 3 = 43 + 3 53 2 = 4 3 2 9 ( 53 ) 2 ( 43 3 53 ) = 686 43 3 53 \Rightarrow \begin{cases} u^3 = \dfrac {-43+\sqrt{43^2-4(343)}}{2} = -\dfrac {43-3\sqrt{53}}{2} \\ v^3 = -\dfrac {43+3\sqrt{53}}{2} = -\dfrac {43^2-9(53)}{2(43-3\sqrt{53})} = -\dfrac {686}{43-3\sqrt{53}} \end{cases}

{ u = 43 3 53 2 3 v = 7 2 43 3 53 3 \Rightarrow \begin{cases} u = - \sqrt [3] {\dfrac {43-3\sqrt{53}}{2}} \\ v = -7\sqrt [3] {\dfrac {2}{43-3\sqrt{53}}} \end{cases}

x = 3 + v + u = 3 7 2 43 3 53 3 43 3 53 2 3 \Rightarrow x = -3+v+u = -3-7\sqrt [3] {\dfrac {2}{43-3\sqrt{53}}} - \sqrt [3] {\dfrac {43-3\sqrt{53}}{2}}

a + b + c + 1 = 3 + 43 + 53 + 1 = 100 \Rightarrow a+b+c+1=3+43+53+1 = \boxed{100}

You are an awesome basher sir 🏆!

Venkata Karthik Bandaru - 6 years, 2 months ago

Log in to reply

Then you must upvote his solution... :P

Nihar Mahajan - 6 years, 2 months ago

Log in to reply

Upvoted 💡 !

Venkata Karthik Bandaru - 6 years, 2 months ago

Neatest Cardano's solution I've seen! VERY NICE!

Pi Han Goh - 5 years, 6 months ago
Ronak Agarwal
Mar 11, 2015

I will present you 2 methods, first is the long one and second is the short one.

Method-1 \large \text{Method-1}

Watch a little see a little it gets factorised neatly as follows :

f ( x ) = x 5 + 9 x 4 + 7 x 3 + 16 x 2 + 6 x + 7 = ( x 5 + 7 x 3 + 6 x ) + ( 9 x 4 + 16 x 2 + 7 ) f(x) = x^{5}+9x^{4}+7x^{3}+16x^{2}+6x+7=(x^{5}+7x^{3}+6x)+(9x^{4}+16x^{2}+7)

f ( x ) = x ( x 2 + 1 ) ( x 2 + 6 ) + ( 9 x 2 + 7 ) ( x 2 + 1 ) \Rightarrow f(x) = x(x^{2}+1)(x^{2}+6)+(9x^{2}+7)(x^{2}+1)

f ( x ) = ( x 2 + 1 ) ( x 3 + 9 x 2 + 6 x + 7 ) = 0 \Rightarrow f(x) = (x^{2}+1)(x^{3}+9x^{2}+6x+7)=0

Hence we have two roots of f ( x ) = i , i f(x)=i,-i

For the rest of the roots, we will solve :

x 3 + 9 x 2 + 6 x + 7 = 0 x^{3}+9x^{2}+6x+7 = 0

In the next step of solving the cubic we will first depress the cubic( that is make an appropiate substitution such that co-efficient of x 2 = 0 x^{2}=0 )

In depressing the cubic a x 3 + b x 2 + c x + d = 0 ax^{3}+bx^{2}+cx+d=0 , we will make the substitution :

x + b 3 a = y x+\dfrac{b}{3a}=y

In our cubic we make the substitution x = y 3 x=y-3 , to get our cubic as :

y 3 + 43 = 21 y y^{3}+43 = 21y

Now we will make use of the identity :

a 3 + b 3 + y 3 3 a b y = ( a + b + y ) ( a 2 + b 2 + y 2 a b b y a y ) a^{3}+b^{3}+y^{3} - 3aby = (a+b+y)(a^{2}+b^{2}+y^{2}-ab-by-ay)

Now we will find a , b a,b such that :

a 3 + b 3 = 43 , 3 a b = 21 a^{3}+b^{3}=43 , 3ab=21

Eliminating b b from these two equations we have :

a 6 43 a 3 + 343 = 0 a^{6}-43a^{3}+343=0

It is quadratic in a 3 {a}^{3} , hence solving for a 3 a^{3} , we have ;

a 3 = 43 ± 3 53 2 a^{3} = \dfrac{43 \pm 3\sqrt{53}}{2}

The real root of cubic in y y is given by :

y = a b y = - a - b

Since ( a + b + y ) ( a 2 + b 2 + y 2 a b a y b y ) = 0 (a+b+y)(a^{2}+b^{2}+y^{2}-ab-ay-by) = 0

So let a = 43 3 53 2 3 a = \sqrt [ 3 ]{ \dfrac { 43-3\sqrt { 53 } }{ 2 } } , remember choice of a a is arbitary.

Hence b = 7 2 43 3 53 3 b=7\sqrt [ 3 ]{ \dfrac { 2 }{ 43-3\sqrt { 53 } } }

Putting these values we have :

y = 43 3 53 2 3 7 2 43 3 53 3 y=- \sqrt [ 3 ]{ \dfrac { 43-3\sqrt { 53 } }{ 2 } } - 7\sqrt [ 3 ]{ \dfrac { 2 }{ 43-3\sqrt { 53 } } }

Finally we have :

x = 3 43 3 53 2 3 7 2 43 3 53 3 x = -3 - \sqrt [ 3 ]{ \dfrac { 43-3\sqrt { 53 } }{ 2 } } - 7\sqrt [ 3 ]{ \dfrac { 2 }{ 43-3\sqrt { 53 } } }

a = 3 , b = 43 , c = 53 \Rightarrow \boxed{a=3,b=43,c=53}

Method 2 \text{Method 2}

Put the equation into wolfram-alpha and press OK , and yes you got it.

I believe question poser has solved this question by this alternate way since as soon as I press OK , it returns me exactly the same closed form as he has posed in this problem.

I appreciate your 2 n d 2^{nd} approach, really elegant 😱 :p !

Venkata Karthik Bandaru - 6 years, 2 months ago

This problem is underrated because of the fact that most people tend to use method-2.

Anik Mandal - 6 years, 2 months ago

Well done sir, well done ...

Trung Đặng Đoàn Đức - 6 years, 2 months ago

ROFL!!!!! @Parth Lohomi is that true? xD

Nihar Mahajan - 6 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...