Be Positive in 2017

Algebra Level 4

f ( 2017 ) + f ( 2016 ) + f ( 2015 ) + + f ( 4 ) + f ( 3 ) + f ( 2 ) + f ( 1 2 ) + f ( 1 3 ) + f ( 1 4 ) + + f ( 1 2015 ) + f ( 1 2016 ) + f ( 1 2017 ) f(2017) + f(2016) + f(2015) +\cdots + f(4) + f(3) + f(2) + f \left(\frac{1}{2}\right) + f\left(\frac{1}{3}\right) + f\left(\frac{1}{4}\right) + \cdots + f\left(\frac{1}{2015}\right) + f\left(\frac{1}{2016}\right) + f\left(\frac{1}{2017}\right)

Given that f f is a real function such that f ( x ) = x 1 x f(x) = \dfrac{x}{1-x} for x 1 x \neq 1 . Find the value of the expression above.


Try another problem on my set, Let's Practice .


The answer is -2016.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

The expression can be rewritten as:

S = n = 2 2017 f ( x ) + n = 2 2017 f ( 1 x ) = n = 2 2017 ( f ( x ) + f ( 1 x ) ) = n = 2 2017 ( x 1 x + 1 x 1 1 x ) = n = 2 2017 ( x 1 x + 1 x 1 ) = n = 2 2017 x 1 1 x = n = 2 2017 1 = 2016 \begin{aligned} S & = \sum_{n=2}^{2017} f(x) + \sum_{n=2}^{2017} f \left(\frac 1x \right) \\ & = \sum_{n=2}^{2017} \left(f(x) + f \left(\frac 1x \right) \right) \\ & = \sum_{n=2}^{2017} \left(\frac x{1-x} + \frac {\frac 1x}{1-\frac 1x} \right) \\ & = \sum_{n=2}^{2017} \left(\frac x{1-x} + \frac 1{x-1} \right) \\ & = \sum_{n=2}^{2017} \frac {x-1}{1-x} \\ & = \sum_{n=2}^{2017} -1 \\ & = \boxed{-2016} \end{aligned}

I am sorry, but isn't the answer 2016 -2016 ? Did i make somethinf wrong, or did you just typo, sir? - @Chew-Seong Cheong.

Fidel Simanjuntak - 4 years, 5 months ago

Log in to reply

Sorry, it should be -2016.

Chew-Seong Cheong - 4 years, 5 months ago

Oh, thank you, sir.

Fidel Simanjuntak - 4 years, 5 months ago

We can manipulate the function.

f ( a ) + f ( 1 a ) = ( a 1 a ) + ( 1 a 1 1 a ) f(a) + f(\frac{1}{a}) = ( \frac{a}{1-a}) + ( \frac{\frac{1}{a}}{1- \frac{1}{a}} )

= a 1 a + 1 a 1 = a 1 a 1 1 a = 1 = \frac{a}{1-a} + \frac{1}{a-1} = \frac{a}{1-a} - \frac{1}{1-a} = -1 .

So we have f ( a ) + f ( 1 a ) = 1 f(a) + f(\frac{1}{a}) = -1 .

Now, let S S is the value of the given expression.

S = [ f ( 2017 ) + f ( 1 2017 ) ] + [ f ( 2016 ) + f ( 1 2016 ) ] + . . . + [ f ( 2 ) + f ( 1 2 ) ] S = [ f(2017) + f(\frac{1}{2017}) ] + [ f(2016) + f(\frac{1}{2016}) ] + ... + [ f(2) + f(\frac{1}{2}) ]

S = ( 1 ) + ( 1 ) + ( 1 ) + . . . + ( 1 ) 2016 S = (-1) + (-1) + (-1) + ... + (-1) \rightarrow 2016 times.

Hence, S = 2016 S= -2016 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...