Happy New Year 2016

Algebra Level 5

Let x , y , z x,y,z be positive reals such that x 2 + y 2 + z 2 = 1 x^2+y^2+z^2=1 if a x y + b y z = a 2 + b 2 2 axy+byz=\dfrac{\sqrt{a^2+b^2}}{2} for some positive real numbers a a and b b , then the value of y y can be expressed as

A B C \large{\dfrac{A}{B\sqrt{C}} }

where A A and B B are co-prime positive integers and a square free natural number C C . Find A + B + C A+B+C .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Let
y = sin θ y = \sin\theta
x = cos θ sin α x = \cos\theta \sin \alpha
z = cos θ cos α z = \cos \theta \cos \alpha
a x y + b y z = sin θ cos θ × ( a sin α + b cos α ) \therefore axy + byz = \sin\theta \cos \theta \times \left( a\sin\alpha + b\cos\alpha \right)
a x y + b y z = a 2 + b 2 sin 2 θ 2 × sin ( α + β ) \therefore axy + byz = \dfrac{\sqrt{a^2 + b^2} \sin2\theta}{2} \times \sin(\alpha + \beta) where β = arccos ( a a 2 + b 2 ) \beta = \arccos\left(\dfrac{a}{\sqrt{a^2+b^2}}\right)
This value is equal to a 2 + b 2 2 \dfrac{\sqrt{a^2 + b^2}}{2} when α + β = π 2 \alpha + \beta = \dfrac{\pi}{2}
& 2 θ = π 2 θ = π 4 2\theta = \dfrac{\pi}{2} \rightarrow \theta = \dfrac{\pi}{4}
y = sin π 4 = 1 2 \therefore y = \sin\dfrac{\pi}{4} = \dfrac{1}{\sqrt{2}}
Comparing, A = 1, B = 1, C = 2.
A + B + C = 1 + 1 + 2 = 4 A + B + C = 1+1+2 = 4


Abhi Kumbale
Jan 2, 2016

Manuel Kahayon
Dec 31, 2015

By the arithmetic-geometric inequality of absolute happiness,

x 2 + a 2 y 2 a 2 + b 2 2 + b 2 y 2 a 2 + b 2 + z 2 2 a 2 x 2 y 2 a 2 + b 2 + b 2 z 2 y 2 a 2 + b 2 \frac{x^2+\frac{a^2y^2}{a^2+b^2}}{2} + \frac{\frac{b^2y^2}{a^2+b^2}+z^2}{2} \geq \sqrt{\frac{a^2x^2y^2}{a^2+b^2}} + \sqrt{\frac{b^2z^2y^2}{a^2+b^2}}

Which results in

a 2 + b 2 2 a x y + b y z \frac{\sqrt{a^2+b^2}}{2} \geq axy+byz

wherein equality is achieved if and only if a 2 y 2 a 2 + b 2 = x 2 \frac{a^2y^2}{a^2+b^2} = x^2 and b 2 y 2 a 2 + b 2 = z 2 \frac{b^2y^2}{a^2+b^2} = z^2

Now, with more happiness, we substitute these into the equation

x 2 + y 2 + z 2 = 1 x^2+y^2+z^2 = 1

a 2 y 2 a 2 + b 2 + y 2 + b 2 y 2 a 2 + b 2 = 1 \frac{a^2y^2}{a^2+b^2} +y^2 +\frac{b^2y^2}{a^2+b^2}=1

2 y 2 = 1 2y^2=1 , y = 1 2 y=\frac{1}{\sqrt{2}}

Now, after repeatedly doubting the answer which you have derived because it doesn't seem to fit the answer format (why does the answer format have to be like that???) we get A=1, B=1, C=2 ( y = 1 1 2 y=\frac{1}{1\sqrt{2}} )

Then, A + B + C = 4 A+B+C=4

similar way!

Shreyash Rai - 5 years, 4 months ago
Aareyan Manzoor
Jan 1, 2016

using the c-s inequity: y 2 ( a 2 + b 2 ) ( x 2 + z 2 ) ( a x y + b z y ) 2 y^2(a^2+b^2)(x^2+z^2)≥(axy+bzy)^2 ( a x y + b y z ) y 2 ( a 2 + b 2 ) ( 1 y 2 ) = ( a 2 + b 2 ) ( y 2 y 4 ) = ( a 2 + b 2 ) ( ( y 2 . 5 ) + ( . 5 ) 2 ) (axy+byz)≤\sqrt{y^2(a^2+b^2)(1-y^2)}=\sqrt{(a^2+b^2)(y^2-y^4)}=\sqrt{(a^2+b^2)(-(y^2-.5)+(.5)^2)} we know from a square≥0, or ( y 2 . 5 ) 2 0 -(y^2-.5)^2≤0 or ( y 2 . 5 ) 2 + . 25 . 25 -(y^2-.5)^2+.25≤.25 . equity occurs at y 2 = . 5 y = 1 1 2 y^2=.5\Longrightarrow y=\dfrac{1}{1\sqrt{2}} . we put the max in a x y + b y z ( a 2 + b 2 ) ( y 2 y 4 ) ( a 2 + b 2 ) . 25 = a 2 + b 2 2 axy+byz≤\sqrt{(a^2+b^2)(y^2-y^4)}≤\sqrt{(a^2+b^2).25}=\dfrac{\sqrt{a^2+b^2}}{2} so y must be that value or else the equity cant be achieved.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...