Happy New Year functionπŸ˜†

Algebra Level 4

If f ( x ) = 4 x 4 x + 2 f(x)=\dfrac{4^x}{4^x +2} , find

f ( 1 2019 ) + f ( 2 2019 ) + f ( 3 2019 ) + β‹― + f ( 2018 2019 ) . f \left(\frac{1}{2019}\right)+ f \left(\frac{2}{2019}\right)+ f \left(\frac{3}{2019}\right)+ \cdots+ f \left(\frac{2018}{2019}\right).

2037 1009 0 2019

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Jahangir Hossain
Dec 30, 2018

g i v e n given

f ( x ) = 4 x 4 x + 2 f(x)=\frac{4^x}{4^x +2}

f ( 1 βˆ’ x ) = 4 1 βˆ’ x 4 1 βˆ’ x + 2 f(1-x) = \frac{4^{1-x}}{4^{1-x} +2}

= 4 4 x 4 4 x + 2 \space \space \space \space \space \space \space \space \space \space \space \space \space \space = \frac{\frac{4}{4^x}}{\frac{4}{4^x}+2}

= 4 4 x 4 + 2. 4 x 4 x \space \space \space \space \space \space \space \space \space \space \space \space \space \space = \frac{\frac{4}{4^x}}{\frac{4+2.4^x}{4^x}}

= 4 4 x Γ— 4 x 4 + 2. 4 x \space \space \space \space \space \space \space \space \space \space \space \space \space \space = \frac{4}{4^x} \times \frac{4^x}{4+2.4^x}

= 4 4 + 2. 4 x \space \space \space \space \space \space \space \space \space \space \space \space \space \space = \frac{4}{4+2.4^x}

= 2 4 x + 2 \space \space \space \space \space \space \space \space \space \space \space \space \space \space = \boxed{ \frac{2} {4^x+2}}

N o w Now

f ( x ) + f ( 1 βˆ’ x ) f(x)+f(1-x) = 4 x + 2 4 x + 2 = 1 =\frac{4^x+2}{4^x+2} =\boxed{ 1}

1 s t + l a s t = f ( 1 2019 ) + f ( 2018 2019 ) 1st + last = f(\frac{1}{2019})+f(\frac{2018}{2019})

= f ( 1 2019 ) + f ( 1 βˆ’ 1 2019 ) \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space= f(\frac{1}{2019})+f(1-\frac{1}{2019})

= 1 \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space= 1 \space \space \space \space \space \space \space \space ∴ f ( x ) + f ( 1 βˆ’ x ) = 1 \boxed{ \therefore f(x)+f(1-x)=1 }

w e c a n s e e t h a t , s u m o f e v e r y p a i r f r o m g i v e n s e r i e s i s 1 we \space can \space see \space that, \space sum \space of \space every \space pair \space from \space given \space series \space is \space \boxed{ 1 }

S o , So,

T o t a l P a i r = 2018 Γ· 2 Total \space Pair \space = \space 2018Γ·2

= 1009 \space\space\space\space\space\space\space\space \space \space \space \space \space \space \space \space \space \space \space \space = \boxed{ 1009}

So, The final answer is 1009 \boxed {1009}

Chew-Seong Cheong
Dec 30, 2018

Given that f ( x ) = 4 x 4 x + 2 f(x) = \dfrac {4^x}{4^x+2} , then

f ( x ) + f ( 1 βˆ’ x ) = 4 x 4 x + 2 + 4 1 βˆ’ x 4 1 βˆ’ x + 2 MultiplyΒ upΒ andΒ downΒ by 4 x βˆ’ 1 2 . = 4 x 4 x + 2 + 2 2 + 4 x = 1 \begin{aligned} f(x) + f(1-x) & = \frac {4^x}{4^x+2} + \color{#3D99F6} \frac {4^{1-x}}{4^{1-x}+2} & \small \color{#3D99F6} \text{Multiply up and down by }4^{x-\frac 12}. \\ & = \frac {4^x}{4^x+2} + \color{#3D99F6} \frac {2}{2+4^x} \\ & = 1 \end{aligned}

Now we have:

S = f ( 1 2019 ) + f ( 2 2019 ) + f ( 3 2019 ) + β‹― + f ( 2016 2019 ) + f ( 2017 2019 ) + f ( 2018 2019 ) = f ( 1 2019 ) + f ( 2 2019 ) + f ( 3 2019 ) + β‹― + f ( 1 βˆ’ 3 2019 ) + f ( 1 βˆ’ 2 2019 ) + f ( 1 βˆ’ 1 2019 ) = 1 + 1 + 1 + β‹― + 1 ⏟ NumberΒ ofΒ 1s = 1009 = 1009 \begin{aligned} S & = f \left(\frac 1{2019}\right) + {\color{#3D99F6} f \left(\frac 2{2019}\right)} + {\color{#D61F06} f \left(\frac 3{2019}\right)} + \cdots + {\color{#D61F06} f \left(\frac {2016}{2019}\right)} + {\color{#3D99F6} f \left(\frac {2017}{2019}\right)} + f \left(\frac {2018}{2019}\right) \\ & = f \left(\frac 1{2019}\right) + {\color{#3D99F6} f \left(\frac 2{2019}\right)} + {\color{#D61F06} f \left(\frac 3{2019}\right)} + \cdots + {\color{#D61F06} f \left(1- \frac 3{2019}\right)} + {\color{#3D99F6} f \left(1- \frac 2{2019}\right)} + f \left(1 - \frac 1{2019}\right) \\ & = \underbrace{1 + 1 + 1 + \cdots + 1}_{\text{Number of 1s}=1009} \\ & = \boxed{1009} \end{aligned}

Jacopo Piccione
Dec 30, 2018

This is not a real solution, it's just a way to solve the problem looking to options. See Jahangir and Otto's comments for effective solutions.

For all x x it's true that

4 x 4 x + 2 < 1 \frac{4^x}{4^x+2}<1

so must hold also

βˆ‘ i = 1 2018 f ( i 2019 ) < 2018 \sum_{i=1}^{2018}f(\frac{i}{2019})<2018 .

Now, we have only two options for the solution, 0 0 and 1009 1009 . But all terms are positive, so only one option is possible: 1009 \boxed{1009} .

Otto Bretscher
Dec 30, 2018

Just to have some New Year's fun, we can write f ( x ) = 1 2 tanh ⁑ ( ln ⁑ 2 ( x βˆ’ 1 2 ) ) + 1 2 f(x)=\frac{1}{2}\tanh\left(\ln 2(x-\frac{1}{2})\right)+\frac{1}{2} . Since tanh ⁑ t \tanh t is an odd function and the given points are arranged symmetrically with respect to x = 1 2 x=\frac{1}{2} , the answer is 2018 Γ— 1 2 = 1009 2018\times \frac{1}{2}=\boxed{1009} .

My favorite solution here. Thank you.

Pi Han Goh - 2Β years, 5Β months ago

0 pending reports

Γ—

Problem Loading...

Note Loading...

Set Loading...