Happy summing

Calculus Level 3

S = n = 1 m = 0 n 1 3 m n ! \mathfrak{S}=\displaystyle \sum^{\infty}_{n=1} \dfrac{ \displaystyle \sum^{n-1}_{m=0}3^m}{n!}

Find the value of S \lfloor \mathfrak{S} \rfloor .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Feb 19, 2016

m = 0 n 1 3 m = 3 n 1 2 ( S u m o f I n f i n i t e G P ) \displaystyle \sum^{n-1}_{m=0}3^m =\dfrac{3^n-1}{2}~~(\color{#D61F06}{Sum~of~Infinite~GP}) Hence summation simplifies to: S = 1 2 n = 1 ( 3 n 1 n ! ) \Large\mathfrak{S}=\dfrac{1}{2}\displaystyle \sum^{\infty}_{n=1} (\color{#20A900}{\dfrac{ 3^n-1}{n!}}) = 1 2 ( e 3 e ) 8.68 \Large =\dfrac{1}{2}(e^3-e)\approx 8.68 8.68 = 8 \huge \therefore \lfloor 8.68 \rfloor=\boxed{\color{#007fff}{8}}


N O T E : e x 1 = n = 1 x n n ! Put x=3 and x=1 and then subtract e 3 e = n = 1 3 n 1 n ! \large\boxed{\mathcal{\color{#302B94}{NOTE:-}}\\ \color{#3D99F6}{e^x-1=\displaystyle\sum_{n=1}^{\infty}\dfrac{x^n}{n!}}\\ \text{Put x=3 and x=1 and then subtract}\\ \color{#20A900}{\Rightarrow e^3-e=\displaystyle\sum_{n=1}^{\infty}\dfrac{3^n-1}{n!}}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...