Happy X'mas

Find the number of trailing zeros

25 ! × 12 ! × 2015 ! \large 25! \times 12! \times 2015!


The answer is 510.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Akshat Sharda
Dec 27, 2015

Number of zeroes in 25 ! 25! ,

= 25 5 1 + 25 5 2 =\left \lfloor \frac{25}{5^1} \right \rfloor + \left \lfloor \frac{25}{5^2} \right \rfloor

= 5 + 1 = 6 =5+1=6

Number of zeroes in 12 ! 12! ,

= 12 5 1 =\left \lfloor \frac{12}{5^1} \right \rfloor

= 2 =2

Number of zeroes in 2015 ! 2015!

= 2015 5 1 + 2015 5 2 + 2015 5 3 + 2015 5 4 =\left \lfloor \frac{2015}{5^1} \right \rfloor + \left \lfloor \frac{2015}{5^2} \right \rfloor + \left \lfloor \frac{2015}{5^3} \right \rfloor + \left \lfloor \frac{2015}{5^4} \right \rfloor

= 403 + 80 + 16 + 3 = 502 =403+80+16+3=502

Therefore,

Number of zeroes in 25 ! × 12 ! × 2015 ! 25!×12!×2015! ,

= 1 0 6 × 1 0 2 × 1 0 502 =10^6×10^2×10^{502}

= 1 0 510 510 =10^{510} \Rightarrow \boxed{510}

Nagarjuna Reddy
Dec 26, 2015

Take 2015 and divide it by 5 succeivly and add all quotients you get 403+80+16+3=502. Similarly divide 25 we get 6 also divide 12 we get 2 . so 506+12+2=510.so it ends with 510 zeros.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...