Hard Integration

Calculus Level 2

0 1 x 4 + 1 d x = ? \large \int_0^\infty \frac 1{x^4+1} dx = \ ?


The answer is 1.1107.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 12, 2020

We can use contour integration to solve the integral, with a closed upper semicircular arc in the complex plane with its radius R R \to \infty as contour γ \gamma .

I = 0 1 x 4 + 1 d x As the integrand is even. = 1 2 1 x 4 + 1 d x Changing x to complex variable z = 1 2 γ 1 z 4 + 1 d z and integrate over contour γ . = 1 2 γ d z ( z e π 4 i ) ( z e 3 π 4 i ) ( z + e π 4 i ) ( z + e 3 π 4 i ) Only 2 of the 4 poles in contour γ \begin{aligned} I & = \int_0^\infty \frac 1{x^4+1} dx & \small \blue{\text{As the integrand is even.}} \\ & = \frac 12 \int_{-\infty}^\infty \frac 1{x^4+1} dx & \small \blue{\text{Changing }x \text{ to complex variable }z} \\ & = \frac 12 \int_\gamma \frac 1{z^4+1} dz & \small \blue{\text{and integrate over contour }\gamma.} \\ & = \frac 12 \int_\gamma \frac {dz}{\blue{(z-e^{\frac \pi 4 i})(z-e^{\frac {3\pi 4}i})}(z+e^{\frac \pi 4 i})(z+e^{\frac {3\pi 4}i})} & \small \blue{\text{Only 2 of the 4 poles in contour }\gamma} \end{aligned}

= 1 2 2 ( γ d z ( z 1 2 i 2 ) ( z + 1 2 + i 2 ) ( z 1 2 + i 2 ) γ d z ( z + 1 2 i 2 ) ( z + 1 2 + i 2 ) ( z 1 2 + i 2 ) ) = 2 π i 2 2 ( 1 2 ( i 1 ) + 1 2 ( 1 + i ) ) Applying Cauchy integral formula = π 2 2 1.1107 \begin{aligned} \ \ & = \small \frac 1{2\sqrt 2} \left( \int_\gamma \frac {dz}{\blue{\left(z-\frac 1{\sqrt 2} -\frac i{\sqrt 2} \right)}\left(z+\frac 1{\sqrt 2} +\frac i{\sqrt 2} \right)\left(z-\frac 1{\sqrt 2} +\frac i{\sqrt 2} \right)} - \int_\gamma \frac {dz}{\blue{\left(z+\frac 1{\sqrt 2} -\frac i{\sqrt 2} \right)}\left(z+\frac 1{\sqrt 2} +\frac i{\sqrt 2} \right)\left(z-\frac 1{\sqrt 2} +\frac i{\sqrt 2} \right)} \right) \\ & = \frac {2\pi i}{2\sqrt 2}\left(\frac 1{2(i-1)} + \frac 1{2(1+i)}\right) \quad \quad \small \blue{\text{Applying Cauchy integral formula}} \\ & = \frac \pi{2\sqrt 2} \approx \boxed{1.1107} \end{aligned}

Naren Bhandari
Apr 12, 2020

For n N n\in\mathbb N I ( n ) = 0 1 1 + x n d x = π n csc ( π n ) I(n)=\int_0^{\infty} \frac{1}{1+x^n} dx =\frac{\pi}{n} \csc\left(\frac{\pi}{n}\right) and hence for n = 4 n=4 we have I ( 4 ) = π 4 csc ( π 4 ) 1.1107 I(4)=\frac{\pi}{4}\csc\left(\frac{\pi}{4}\right)\approx 1.1107


Generalization For all n > 1 n>1 we observe that I ( n ) = 0 d x 1 + x n I(n)= \int_{0}^{\infty}\dfrac{\,dx}{1+x^n} is convergent. Now making u-substitution of the integrand we get I ( n ) = 1 0 u ( 1 + x n ) 2 n x n 1 d u I(n) = -\int_{1}^{0} u\dfrac{(1+x^n)^2}{nx^{n-1}}\,du as u = ( 1 + x n ) 1 u=\,(1+x^n)^{-1} and reversing the limits we have then I ( n ) = 1 n 0 1 u u 2 u 1 n + 1 ( 1 u ) 1 n + 1 d u = 1 n 0 1 u 1 n ( 1 u ) 1 n + 1 d u \begin{aligned} I(n) & = \dfrac{1}{n} \int_{0}^{1}\dfrac{u}{u^2}\cdot\dfrac{u^{-\frac{1}{n}+1}}{(1-u)^{-\frac{1}{n} +1}}\,du \\&= \dfrac{1}{n}\int_{0}^{1}\dfrac{u^{-\frac{1}{n}}}{(1-u)^{-\frac{1}{n}+1}}\,du\end{aligned} giving us B n ( 1 1 n , 1 n ) = 1 n Γ ( 1 1 n ) Γ ( 1 n ) Γ ( 1 ) \dfrac{B}{n}\left(1-\dfrac{1}{n} , \dfrac{1}{n}\right)=\dfrac{1}{n}\dfrac{\Gamma\left(1-\frac{1}{n}\right)\Gamma\left(\frac{1}{n}\right)}{\Gamma(1)} and hence by Euler reflection formula we have I ( n ) = 1 n π sin π n I(n) =\dfrac{1}{n}\dfrac{\pi}{\sin \frac{\pi}{n}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...