Hard problem

Algebra Level 4

If a + b = 1 a+b=1 , the minimum value of

( a + 1 a ) 2 + ( b + 1 b ) 2 \left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2

can be expressed in the form m n \frac{m}{n} , where m , n m,n are coprime, positive integers. Find the value of m + n m+n .

(This problem is not original.) \textbf{(This problem is not original.)}


The answer is 27.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mathh Mathh
Jul 24, 2014

First of all, note that a 2 + b 2 2 a + b 2 \displaystyle\sqrt{ \frac{a^2+b^2}{2} } \ge \frac{a+b}{2} ( a b ) 2 ( a + b 2 ) 4 \displaystyle (ab)^2\ge \left(\frac{a+b}{2}\right)^4

both actually work a , b R \forall a,b\in\mathbb R . You can see this for yourself, I won't present a proof, although I have rigorous proofs for these.


a 2 + b 2 2 a + b 2 = 1 2 \displaystyle \sqrt{ \frac{a^2+b^2}{2} } \ge \frac{a+b}{2}= \frac{1}{2} a 2 + b 2 0.5 (1) \displaystyle \implies a^2+b^2\ge 0.5\tag{1} ( 1 a ) 2 + ( 1 b ) 2 2 1 a + 1 b 2 \displaystyle \sqrt{ \frac{\left( \frac{1}{a}\right)^2+\left( \frac{1}{b} \right)^2 }{2} }\ge \frac{\frac{1}{a}+\frac{1}{b}}{2}

( 1 a ) 2 + ( 1 b ) 2 1 2 ( a b ) 2 \displaystyle \implies \left(\frac{1}{a}\right)^2+\left( \frac{1}{b} \right)^2\ge \frac{1}{2(ab)^2} 1 2 ( a + b 2 ) 4 = 8 (2) \displaystyle \ge \cfrac{1}{2\left(\cfrac{a+b}{2}\right)^4}=8\tag{2} ( a + 1 a ) 2 + ( b + 1 b ) 2 \displaystyle \left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2

= a 2 + b 2 + ( 1 a ) 2 + ( 1 b ) 2 + 4 (1)(2) 12.5 \displaystyle =a^2+b^2+\left(\frac{1}{a} \right)^2+\left(\frac{1}{b} \right)^2+4\stackrel{\text{(1)(2)}}\ge \boxed {12.5}

David Vaccaro
Jul 25, 2014

Set f ( x ) = ( x + 1 x ) 2 f(x)=(x+\frac{1}{x})^{2} , we have f ( x ) = 2 ( 1 + 3 x 4 ) 0 f''(x)=2(1+\frac{3}{x^{4}})\geq 0

So f ( x ) f(x) is convex and f ( a ) + f ( b ) 2 f ( a + b 2 ) = 25 4 \frac{f(a)+f(b)}{2} \geq f(\frac{a+b}{2})=\frac{25}{4}

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...