Hardcore solve for x x problem

Algebra Level 2

Solve for m 2 m^2 . arctan ( x k ) = arcsin ( m ) \arctan \left( {{x^k}} \right) = \arcsin \left( m \right)

m 2 = x 2 k 2 x k + 1 k {m^2} = \frac{{{x^{2k}} - 2{x^k} + 1}}{k} m 2 = x 2 k + 2 x k + 1 x 2 k {m^2} = \frac{{{x^{2k}} + 2{x^k} + 1}}{{{x^{2k}}}} m 2 = x 2 k x 2 k + 1 {m^2} = \frac{{{x^{2k}}}}{{{x^{2k}} + 1}} m 2 = x k k k {m^2} = \frac{{{x^k} - k}}{k} m 2 = x 2 k + 2 x k x 2 k {m^2} = \frac{{{x^{2k}} + 2{x^k}}}{{{x^{2k}}}} m 2 = x 2 k + 1 x 2 k 1 {m^2} = \frac{{{x^{2k}} + 1}}{{{x^{2k}} - 1}} m 2 = x 2 k 2 x k + 1 x 2 k + 1 {m^2} = \frac{{{x^{2k}} - 2{x^k} + 1}}{{{x^{2k}} + 1}} m 2 = x 2 k + 1 + 1 x 2 k 1 {m^2} = \frac{{{x^{2k + 1}} + 1}}{{{x^{2k - 1}}}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Mar 30, 2020

sin 1 ( m ) = tan 1 ( x k ) tan 1 ( m 1 m 2 ) = tan 1 ( x k ) m 1 m 2 = x k Squaring both sides m 2 1 m 2 = x 2 k m 2 = ( 1 m 2 ) x 2 k m 2 = x 2 k 1 + x 2 k \begin{aligned} \sin^{-1} (m) & = \tan^{-1} (x^k) \\ \implies \tan^{-1} \left(\frac {m}{\sqrt{1-m^2}} \right) & = \tan^{-1} (x^k) \\ \frac {m}{\sqrt{1-m^2}} & = x^k & \small \blue{\text{Squaring both sides }} \\ \frac {m^2}{1-m^2} & = x^{2k} \\ m^2 & = (1-m^2)x^{2k} \\ \implies m^2 & = \boxed{\frac {x^{2k}}{1+x^{2k}}} \end{aligned}

Tomáš Hauser
Jul 3, 2018

Since arctan ( x ) = arcsin ( x x 2 + 1 ) \arctan \left( x \right) = \arcsin \left( {\frac{x}{{\sqrt {{x^2} + 1} }}} \right) we can just plug the argument into the formula and get the answer arcsin ( m ) = arcsin ( x k x 2 k + 1 ) m 2 = x 2 k x 2 k + 1 \begin{array}{l} \arcsin \left( m \right) = \arcsin \left( {\frac{{{x^k}}}{{\sqrt {{x^{2k}} + 1} }}} \right)\\ {m^2} = \frac{{{x^{2k}}}}{{{x^{2k}} + 1}} \end{array} .

Zico Quintina
Jul 3, 2018

Let α = arctan ( x k ) = arcsin ( m ) \alpha = \arctan (x^k) = \arcsin (m) . Both arctan \arctan and arcsin \arcsin return values between - π 2 \frac{\text{-}\pi}{2} and π 2 \frac{\pi}{2} , so α \alpha will be an angle in quadrant I or quadrant IV. In either case, and using the fact that tan α = x k \tan \alpha = x^k , we can draw α \alpha as shown below:

But we also have sin α = m \sin \alpha = m . Then

sin α = m = x k x 2 k + 1 m 2 = x 2 k x 2 k + 1 \begin{array}{rcl} \sin \alpha &= \ \ m &= \ \ \dfrac{x^k}{\sqrt{x^{2k} + 1}} \\ \\ &\implies m^2 &= \ \ \boxed{\dfrac{x^{2k}}{x^{2k} + 1}} \end{array}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...