Harder domain of a function

Algebra Level 3

What is the domain of the function below? f : y = 2 x 3 x f:y = \sqrt {{2^x} - {3^x}}

D ( f ) = 2 3 ; 2 3 D\left( f \right) = \left\langle { - \frac{2}{3};\frac{2}{3}} \right\rangle D ( f ) = ( 0 ; 2 3 ) D\left( f \right) = \left( {0;\left. {\frac{2}{3}} \right)} \right. D ( f ) = ( ; 0 ) D\left( f \right) = \left( { - \infty ;0} \right) D ( f ) = ( 2 3 ; 2 3 ) D\left( f \right) = \left( { - \frac{2}{3};\left. {\frac{2}{3}} \right)} \right. D ( f ) = ( 2 3 ; 0 ) D\left( f \right) = \left( { - \frac{2}{3};\left. 0 \right)} \right. D ( f ) = 0 ; ) D\left( f \right) = \left\langle {0;\left. \infty \right)} \right. D ( f ) = ( 0 ; ) D\left( f \right) = \left( {0;\left. \infty \right)} \right. D ( f ) = ( ; 0 D\left( f \right) = \left( {\left. { - \infty ;0} \right\rangle } \right.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Zico Quintina
Jul 2, 2018

We can use the fact that ln \ln is a monotonically increasing function to find the domain of f ( x ) f(x) . We need

2 x 3 x ln 2 x ln 3 x [ Since ln is monotonically increasing ] x ln 2 x ln 3 0 x ( ln 2 3 ) 0 x 0 [ Since ln 2 3 is negative ] \begin{array}{rllll} 2^x &\ge \ \ 3^x \\ \\ \ln 2^x &\ge \ \ \ln 3^x & & & \small \text{[ Since ln is monotonically increasing ]} \\ \\ x \ln 2 - x \ln 3 &\ge \ \ 0 \\ \\ x \left( \ln \dfrac{2}{3} \right) &\ge \ \ 0 \\ \\ x &\le \ \ 0 & & & \small \text{[ Since } \ln \frac{2}{3} \text{ is negative ]} \end{array}

So the domain of f ( x ) f(x) is ( , 0 ] \boxed{(-\infty, 0]}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...