Harmonic Sum

Calculus Level 5

If H ( n ) = k = 1 n 1 k H(n) = \displaystyle \sum_{k=1}^{n} \frac{1}{k}

Then n = 1 [ ( 1 ) n + 1 H ( 2 n ) H ( n ) n ] \displaystyle \sum_{n=1}^{\infty} \left [(-1)^{n+1} \frac{H(2n)-H(n)}{n} \right] can be written in the form π a b + ( ln ( c ) d ) 2 \frac{\pi^a}{b}+\left (\frac{\ln(c)}{d} \right)^2 where a , b , c , d a,b,c,d are positive integers.

What is the value of a + b + c + d ? a + b + c + d?


The answer is 54.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Naren Bhandari
Jun 19, 2020

Wonderful problem based on generating function . Here is my approch.

The generating function of Harmonic number is n = 1 H n x n = ln ( 1 x ) x 1 n = 1 H n x n 1 = ln ( 1 x ) x ( x 1 ) \sum_{n=1}^{\infty} H_{n} x^n=\frac{\ln(1-x)}{x-1}\Rightarrow \sum_{n=1}^{\infty}H_{n} x^{n-1} =\frac{\ln(1-x)}{x(x-1)} and hence on integrating from 0 0 to x = 1 x=-1 we yield n = 1 H n n ( 1 ) n = 0 1 ln ( 1 x ) x ( x 1 ) = Li 2 ( 1 ) + ln 2 ( 2 ) 2 = η ( 2 ) + ln 2 ( 2 ) 2 = ( 1 1 2 ) ζ ( 2 ) + ln 2 ( 2 ) 2 = π 2 12 + ln 2 ( 2 ) 2 \sum_{n=1}^{\infty}\frac{H_n}{n} (-1)^{n}=\int_0^{-1} \frac{\ln(1-x)}{x(x-1)}=\operatorname{Li}_2(-1)+\frac{\ln^2(2)}{2}\\=-\eta(2) +\frac{\ln^2(2)}{2}=-\left(1-\frac{1}{2}\right)\zeta(2)+\frac{\ln^2(2)}{2}=-\frac{\pi^2}{12}+\frac{\ln^2(2)}{2} multiply by 1 -1 we have as desired series on left giving us π 2 12 ln 2 ( 2 ) 2 \displaystyle \frac{\pi^2}{12}-\frac{\ln^2(2)}{2} . Or following the above work wr can deduce the generating function as n = 1 H n n x n = Li 2 ( x ) + ln 2 ( 1 x ) 2 ( 1 ) \sum_{n=1}^{\infty}\frac{H_n}{n} x^{n}=\operatorname{Li}_2(x)+\frac{\ln^2(1-x)}{2}\cdots(1) We evaluate n = 1 ( 1 ) n + 1 H 2 n n \displaystyle \sum_{n=1}^{\infty} (-1)^{n+1}\frac{H_{2n} }{n} by setting x = i x=i and multiplying thoroughly by 2 -2 in main generating function ( 1 ) (1) .That is ( n = 1 2 H n n i n ) = n = 1 ( 1 ) n + 1 H 2 n n = ( 2 Li 2 ( i ) ln 2 ( 1 i ) ) \Re\left(\sum_{n=1}^{\infty}\frac{-2H_n}{n} i^n\right)=\sum_{n=1}^{\infty} (-1)^{n+1}\frac{H_{2n}}{n} = \Re(-2\operatorname{Li}_2(i)-\ln^2(1-i)) Note that Li 2 ( i ) = 1 4 η ( 2 ) + i β ( 2 ) = π 2 48 + i G \operatorname{Li}_2(i)=-\frac{1}{4}\eta(2)+i\beta(2)=-\frac{\pi^2}{48}+iG also ln 2 ( 1 i ) = ln ( 2 e i π 4 ) 2 = ( ln 2 2 i π 4 ) 2 = ln 2 2 4 π 2 16 i ln 2 π 4 \ln^2(1-i)=\ln(\sqrt{2}e^{-\frac{i\pi}{4}})^2=\left(\frac{\ln 2}{2}-\frac{i\pi}{4}\right)^2=\frac{\ln^2 2}{4}-\frac{\pi^2}{16}-i\frac{\ln 2\pi}{4} and the eqauting with real part we have ( 2 Li 2 ( i ) ln 2 ( 1 i ) ) = π 2 24 ln 2 2 4 + π 2 16 = 5 π 2 48 ln 2 2 4 \Re(-2\operatorname{Li}_2(i)-\ln^2(1-i))=\frac{\pi^2}{24}-\frac{\ln^22}{4}+\frac{\pi^2}{16}=\frac{5\pi^2}{48}-\frac{\ln^22}{4} and our desired answer is 5 π 2 48 ln 2 2 4 π 2 12 + ln 2 2 2 = π 2 48 + ln 2 2 4 \frac{5\pi^2}{48}-\frac{\ln^22}{4}-\frac{\pi^2}{12}+\frac{\ln^22}{2}=\frac{\pi^2}{48}+\frac{\ln^22}{4}

Notation η ( . ) \eta(.) is Dirichlet eta function and β ( . ) \beta(.) is Dirichlet beta function.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...