Harmonic Motion

If s = a sin ω t i + b cos ω t j \vec s = a \sin \omega t \vec i + b \cos \omega t \vec j , then find the equation of the path of the particle.

None of these x 2 b 2 + y 2 a 2 = 1 \frac{x^2}{b^2} + \frac{y^2}{a^2} = 1 x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 x 2 + y 2 = a 2 + b 2 x^2 + y^2 = \sqrt{a^2 + b^2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sahil Silare
Jan 15, 2017

By the equation we find that s i n ( ω t ) sin(\omega t) and c o s ( ω t ) cos(\omega t) are parameters to terminate, Now we have , s = a sin ω t i + b cos ω t j \vec s = a \sin \omega t \vec i + b \cos \omega t \vec j a s i n ( ω t ) = x asin(\omega t)=x

By squaring,

a 2 s i n 2 ( ω t ) = x 2 a^2sin^2(\omega t)=x^2 s i n 2 ( ω t ) = x 2 a 2 sin^2(\omega t)=\frac{x^2}{a^2} Similarly, c o s 2 ( ω t ) = y 2 a 2 cos^2(\omega t)=\frac{y^2}{a^2} By adding s i n 2 ( ω t ) sin^2(\omega t) and c o s 2 ( ω t ) cos^2(\omega t) , s i n 2 ( ω t ) + c o s 2 ( ω t ) = x 2 a 2 + y 2 b 2 sin^2(\omega t)+cos^2(\omega t)=\frac{x^2}{a^2}+\frac{y^2}{b^2} x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 Hence the equation of trajectory is an ellipse x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 .

Md Zuhair
Jan 14, 2017

A harmonic motion's equation can be described as s = x i + y j \vec s = x\vec i + y \vec j .

Now comparing this equation with s = a sin ω t i + b cos ω t j \vec s = a \sin \omega t \vec i + b \cos \omega t \vec j

We get x = a sin ω t x =a \sin \omega t and y = b cos ω t y = b \cos \omega t

Hence x a = sin ω t \dfrac{x}{a} = \sin \omega t _ _ __ I And y b = cos ω t \dfrac{y}{b} = \cos \omega t ------------------------II

Squaring and adding I and II x 2 a 2 + y 2 b 2 = sin 2 ω t + cos 2 ω t \dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = \sin^2 \omega t\ + \cos^2 \omega t Hence x 2 a 2 + y 2 b 2 \dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1 [ As s i n 2 x + c o s 2 x = 1 sin^2 x + cos^2x = 1 ]

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...