Harmonic number approximation

Calculus Level 4

1 1 + 1 2 + 1 3 + . . . + 1 1 0 12 = ? \large \left \lfloor \frac{1}{1}+ \frac{1}{2}+ \frac{1}{3}+...+\frac{1}{10^{12}}\right \rfloor = \ ?

Notes:

  • \lfloor \cdot \rfloor denotes the floor function .
  • Calculators are allowed.


The answer is 28.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Guilherme Niedu
Aug 16, 2017

γ = lim n k = 1 n 1 k ln ( n ) \large \displaystyle \gamma = \lim_{n \rightarrow \infty} \sum_{k=1}^n \frac1k - \ln(n)

Where γ \gamma is the Euler–Mascheroni constant

Since 1 0 12 10^{12} is large:

γ k = 1 1 0 12 1 k ln ( 1 0 12 ) \large \displaystyle \gamma \approx \sum_{k=1}^{10^{12}} \frac1k - \ln(10^{12})

k = 1 1 0 12 1 k γ + 12 ln ( 10 ) = 28.21... \large \displaystyle \sum_{k=1}^{10^{12}} \frac1k \approx \gamma + 12\ln(10) = 28.21...

k = 1 1 0 12 1 k = 28 \color{#3D99F6} \boxed{\large \displaystyle \left \lfloor \sum_{k=1}^{10^{12}} \frac1k \right \rfloor = 28 }

Tarmo Taipale
Aug 16, 2017

Let's represent the sum 1 1 + 1 2 + 1 3 + . . . + 1 1 0 12 \frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10^{12}} as the total area of a set of rectangles in the xy-plane.

As it can be seen in the picture, the hyperbola y = 1 x y=\frac{1}{x} goes through the upper left corners of the rectangles and goes below the tops of the rectangles. This means, the area between x = 1 x=1 , x = 1 0 12 + 1 x=10^{12}+1 , y = 1 x y=\frac{1}{x} and the x-axis is smaller than the total area of the rectangles. We get

1 1 + 1 2 + 1 3 + . . . + 1 1 0 12 > 1 1 0 12 + 1 ( 1 x d x ) > 1 1 0 12 ( 1 x d x ) \frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10^{12}} > \int_1^{10^{12}+1}(\frac{1}{x}dx)>\int_1^{10^{12}}(\frac{1}{x}dx)

1 1 0 12 ( 1 x d x ) = ln ( 1 0 12 ) ln ( 1 ) = 12 ln ( 10 ) 27 , 63 > 27 \int_1^{10^{12}}(\frac{1}{x}dx)=\ln(10^{12})-\ln(1)=12\ln(10) \approx 27,63>27

as seen in the second picture, the hyperbola y = 1 x 1 y=\frac{1}{x-1} goes through the upper right corners of the rectangles and otherwise above them. This means, the total area of the first rectangle and the area between x = 2 x=2 , x = 1 0 12 + 1 x=10^{12}+1 , y = 1 x 1 y=\frac{1}{x-1} and the x-axis is greater than the total area of all rectangles. We get

1 1 + 1 2 + 1 3 + . . . + 1 1 0 12 < 1 + 2 1 0 12 + 1 ( 1 x 1 d x ) \frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10^{12}} < 1+ \int_2^{10^{12}+1}(\frac{1}{x-1}dx)

1 + 2 1 0 12 + 1 ( 1 x 1 d x ) = 1 + ln ( 1 0 12 ) ln ( 1 ) = 1 + ln ( 1 0 12 ) 28 , 631 < 29 1+ \int_2^{10^{12}+1}(\frac{1}{x-1}dx)=1+\ln(10^{12})-\ln(1) = 1+\ln(10^{12}) \approx 28,631<29

Now we know that 27 < 1 1 + 1 2 + 1 3 + . . . + 1 1 0 12 < 29 27<\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10^{12}}<29 , thus the floor function of the sum is either equal to 28 or 29. Let's prove it's 28 by showing that 28 < 1 1 + 1 2 + 1 3 + . . . + 1 1 0 12 28<\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10^{12}} :

By the argument used above, we get

1 + 1 2 + 1 3 + 1 4 + 1 5 + 1 6 + 7 1 0 12 ( 1 x d x ) < 1 + 1 2 + 1 3 + 1 4 + 1 5 + 1 6 + 7 1 0 12 + 1 ( 1 x d x ) < 1 1 + 1 2 + 1 3 + . . . + 1 1 0 12 1+ \frac{1}{2}+ \frac{1}{3}+ \frac{1}{4} + \frac{1}{5}+ \frac{1}{6}+ \int_7^{10^{12}}(\frac{1}{x}dx )< 1+ \frac{1}{2}+ \frac{1}{3}+ \frac{1}{4} + \frac{1}{5}+ \frac{1}{6}+ \int_7^{10^{12}+1}(\frac{1}{x}dx) < \frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10^{12}}

1 + 1 2 + 1 3 + 1 4 + 1 5 + 1 6 + 7 1 0 12 ( 1 x d x ) = 1 + 1 2 + 1 3 + 1 4 + 1 5 + 1 6 + 12 ln ( 10 ) ln ( 7 ) 28 , 135 > 28 1+ \frac{1}{2}+ \frac{1}{3}+ \frac{1}{4} + \frac{1}{5}+ \frac{1}{6}+ \int_7^{10^{12}}(\frac{1}{x}dx) = 1+ \frac{1}{2}+ \frac{1}{3}+ \frac{1}{4} + \frac{1}{5}+ \frac{1}{6} + 12 \ln(10) - \ln (7) \approx 28,135 > 28

We get 28 < 1 1 + 1 2 + 1 3 + . . . + 1 1 0 12 < 29 28<\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10^{12}}<29 which proves that 1 1 + 1 2 + 1 3 + . . . + 1 1 0 12 = 28 \lfloor \frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10^{12}} \rfloor = \boxed{28}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...