Harmonic Sums in disguise

[ r = 1 2017 ( 2017 r ) ( 1 ) r 1 H r ] 1 = ? \large \left [\sum_{r=1}^{2017} \dbinom {2017} r (-1)^{r-1} H_r \right]^{-1} = \, ?

Notations:

  • H n H_n denotes the n th n^\text{th} harmonic number : H n = 1 + 1 2 + 1 3 + + 1 n . H_n = 1 + \dfrac12 + \dfrac13 + \cdots + \dfrac1n.
  • ( M N ) = M ! N ! ( M N ) ! \dbinom MN = \dfrac {M!}{N! (M-N)!} denotes the binomial coefficient .

Bonus: How would your answer change if we substitute some arbitrary non-trivial sequence a r a_r for H r H_r ?


The answer is 2017.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Jan 8, 2017

Using the identity H n = 0 1 1 x n 1 x d x H_n \; = \; \int_0^1 \frac{1-x^n}{1-x}\,dx we have r = 1 N ( N r ) ( 1 ) r 1 H r = 0 1 1 1 x r = 1 N ( N r ) ( 1 ) r 1 ( 1 x r ) d x = 0 1 1 1 x { ( 1 x ) N 1 ( 1 1 ) N + 1 } d x = 0 1 ( 1 x ) N 1 d x = 1 N \begin{aligned} \sum_{r=1}^N \binom{N}{r} (-1)^{r-1}H_r & = \int_0^1 \frac{1}{1-x} \sum_{r=1}^N \binom{N}{r} (-1)^{r-1}(1 - x^r)\,dx \\ &= \int_0^1 \frac{1}{1-x}\Big\{ (1-x)^N - 1 - (1-1)^N + 1\Big\}\,dx \; = \; \int_0^1 (1-x)^{N-1}\,dx \; = \; \frac{1}{N} \end{aligned} With N = 2017 N=2017 , this makes the answer to the question N = 2017 N = \boxed{2017} .

You missed out on bonus there.

Kartik Sharma - 4 years, 5 months ago

Log in to reply

Not really. You had already posted a general solution, so instead I posted a different, efficient solution to the initial problem.

Mark Hennings - 4 years, 5 months ago
Kartik Sharma
Jan 8, 2017

Proposition #1: m = 1 n ( k = 1 m a k ) ( n m ) ( 1 ) m 1 = m = 0 n 1 ( n 1 m ) a m + 1 ( 1 ) m \displaystyle \text{Proposition \#1:} \large \sum_{m=1}^n {\left(\sum_{k=1}^m{a_k}\right) \binom{n}{m} {(-1)}^{m-1}} = \sum_{m=0}^{n-1}{\binom{n-1}{m} a_{m+1}{(-1)}^m}

Proof: \text{Proof:}

LHS can be written as -

( n 1 ) a 1 ( n 2 ) ( a 1 + a 2 ) + ( n 3 ) a 3 + ( 1 ) n 1 ( n n ) ( a 1 + a 2 + + a n ) \displaystyle \binom{n}{1}a_1 - \binom{n}{2}(a_1 + a_2) + \binom{n}{3} a_3 - \cdots + {(-1)}^{n-1} \binom{n}{n} (a_1 + a_2 + \cdots + a_n)

= ( ( n 1 ) ( n 2 ) + ( n 3 ) + ( 1 ) n 1 ( n n ) ) a 1 + ( ( n 2 ) + ( n 3 ) + ( 1 ) n 1 ( n n ) ) a 2 + + ( ( 1 ) n 1 ( n n ) ) a n \displaystyle = \left(\binom{n}{1} - \binom{n}{2} + \binom{n}{3} -\cdots +{(-1)}^{n-1}\binom{n}{n}\right) a_1 +\left(- \binom{n}{2} + \binom{n}{3} -\cdots +{(-1)}^{n-1}\binom{n}{n}\right) a_2 + \cdots + \left( {(-1)}^{n-1} \binom{n}{n}\right) a_n

Using the fact that ( n 0 ) + ( n 1 ) ( n 2 ) + ( n 3 ) + ( 1 ) n 1 ( n n ) = 0 -\binom{n}{0} +\binom{n}{1} - \binom{n}{2} + \binom{n}{3} -\cdots +{(-1)}^{n-1}\binom{n}{n} = 0 ,

= ( n 0 ) a 1 + ( ( n 0 ) ( n 1 ) ) a 2 + + ( ( n 0 ) ( n 1 ) + ( n 2 ) ( n 3 ) + + ( 1 ) n 1 ( n n 1 ) ) a n \displaystyle = \binom{n}{0} a_1 + \left(\binom{n}{0} - \binom{n}{1}\right) a_2 + \cdots + \left(\binom{n}{0} -\binom{n}{1} + \binom{n}{2} - \binom{n}{3} +\cdots +{(-1)}^{n-1}\binom{n}{n-1}\right) a_n

Proposition #2 : r = 0 k ( n r ) ( 1 ) r = ( n 1 k ) ( 1 ) k \displaystyle \text{Proposition \#2 :} \sum_{r=0}^k {\binom{n}{r} {(-1)}^r} = \binom{n-1}{k} {(-1)}^k

Proof: \text{Proof:}

We use induction (since it is very easy to observe using Pascal's triangle addition law).

S ( k = 0 ) : ( n 0 ) = ( n 1 0 ) \displaystyle S(k=0) : \binom{n}{0} = \binom{n-1}{0} . True \text{True}

S ( k ) : r = 0 k ( n r ) ( 1 ) r = r = 0 k 1 ( n r ) ( 1 ) r + ( n k ) ( 1 ) k \displaystyle S(k) : \sum_{r=0}^k {\binom{n}{r} {(-1)}^r} = \sum_{r=0}^{k-1} {\binom{n}{r} {(-1)}^r} + \binom{n}{k} {(-1)}^k

= ( n 1 k 1 ) ( 1 ) k 1 + ( n k ) ( 1 ) k = ( n 1 k ) ( 1 ) k \displaystyle = \binom{n-1}{k-1} {(-1)}^{k-1} + \binom{n}{k} {(-1)}^k = \binom{n-1}{k} {(-1)}^k . Q.E.D. \displaystyle \text{Q.E.D.}\blacksquare

Coming back to our proof, we use this formula.

= ( n 1 0 ) a 1 ( n 1 1 ) a 2 + 1 n 1 ( n 1 n 1 ) a n \displaystyle = \binom{n-1}{0} a_1 - \binom{n-1}{1} a_2 + \cdots {-1}^{n-1} \binom{n-1}{n-1} a_n

= m = 0 n 1 ( n 1 m ) a m + 1 ( 1 ) m \displaystyle = \sum_{m=0}^{n-1}{\binom{n-1}{m} a_{m+1} {(-1)}^m}

Q.E.D. \displaystyle \text{Q.E.D.}\blacksquare

Now if we substitute a k = 1 k a_k = \frac{1}{k} ,

m = 1 n ( n m ) H m ( 1 ) m 1 = m = 0 n 1 ( n 1 m ) ( 1 ) m m + 1 = 1 n \displaystyle \sum_{m=1}^n {\binom{n}{m} H_m {(-1)}^{m-1}} = \sum_{m=0}^{n-1}{\binom{n-1}{m} \frac{{(-1)}^m}{m+1}} = \frac{1}{n}

It can also be done using Binomial Inversion, i.e,

a n = r = 0 n ( n r ) b r b n = r = 0 n ( 1 ) n r ( n r ) a r a_{n} = \sum_{r=0}^{n} \dbinom{n}{r} b_{r} \iff b_{n} = \sum_{r=0}^{n} (-1)^{n-r} \dbinom{n}{r} a_{r}

I have proved it here .

Ishan Singh - 4 years, 5 months ago

In general the following property holds (used in Proposition 1) r = a n k = a r a r , k = k = a n r = k n a r , k \sum_{r=a}^{n} \sum_{k=a}^{r} a_{r,k} = \sum_{k=a}^{n} \sum_{r=k}^{n} a_{r,k}

Ishan Singh - 4 years, 5 months ago

In the end you missed out on a very important part:

= ( n 1 0 ) a 1 ( n 1 1 ) a 2 + + ( 1 ) n 1 ( n 1 n 1 ) a n = m = 0 n 1 ( n 1 m ) a m + 1 ( 1 ) m = \dbinom{n-1}{0} a_1 - \dbinom{n-1}{1} a_2 + \cdots + {(-1)}^{n-1} \dbinom{n-1}{n-1} a_n \\ = \displaystyle \sum_{m=0}^{n-1} \dbinom{n-1}{m} a_{m+1} \color{#D61F06}{(-1)^{m}}

It was very surprising for me the fact that

m = 0 n 1 ( n 1 m ) 1 m + 1 = 1 n \displaystyle \sum_{m=0}^{n-1} \dbinom{n-1}{m} \dfrac{1}{m+1} = \dfrac 1n

Tapas Mazumdar - 4 years, 2 months ago

Log in to reply

Oops. I am sorry for the trouble.

Kartik Sharma - 4 years, 2 months ago

Log in to reply

It's fine. How about you give a shot at this problem ?

Tapas Mazumdar - 4 years, 2 months ago

Is this, in any way, related to the recent Hong Kong TST?

Manuel Kahayon - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...