Harmonical Integrals

Calculus Level 5

0 3 2 0 1 1 x y 1 x d x d y = A B γ + ln ( A C π 1 / D ) \large \int_{0}^{\frac{3}{2}}\int_{0}^{1}\dfrac{1-x^{y}}{1-x}\, dx\; dy = \dfrac{A}{B}\gamma + \ln\left(\dfrac{A}{C}\pi^{1/D}\right)

If the above equation is true for positive integers A , B , C A,B,C and D D with gcd ( A , B ) = gcd ( A , C ) = 1 \gcd(A,B) = \gcd(A,C) = 1 , find A + B + C + D A+B+C+D .

Notation: γ 0.5772 \gamma \approx 0.5772 denotes the Euler-Mascheroni constant .


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kunal Gupta
Dec 13, 2016

From the definition of Harmonic Numbers , it follows that: 0 1 1 x n 1 x d x = H n \int_{0}^{1}\dfrac{1-x^{n}}{1-x}dx = H_{n} For every positive integer n n , we have that lim m + [ H m H m + n ] = 0 \lim_{m \rightarrow +\infty} \left[H_m - H_{m+n}\right] = 0 Adding H n H_{n} to both sides gives H n = lim m + [ H m ( H m + n H n ) ] = lim m + [ ( k = 1 m 1 k ) ( k = 1 m 1 n + k ) ] = k = 1 + [ 1 k 1 n + k ] = n k = 1 + 1 k ( n + k ) . \begin{aligned}H_n &= \lim_{m \rightarrow +\infty} \left[H_m - (H_{m+n}-H_n)\right] \\ &= \lim_{m \rightarrow +\infty} \left[\left(\sum_{k=1}^m \frac{1}{k}\right) - \left(\sum_{k=1}^m \frac{1}{n+k}\right) \right] \\ &= \sum_{k=1}^{+\infty} \left[\frac{1}{k} - \frac{1}{n+k}\right] = n \sum_{k=1}^{+\infty} \frac{1}{k(n+k)}\, . \end{aligned} Therefore: H n = n k = 1 + 1 k ( n + k ) H_{n} = n\sum_{k=1}^{+\infty}\dfrac{1}{k(n+k)} Getting to the general integral: 0 s 0 1 1 x y 1 x d x d y = 0 s k = 1 + y k ( y + k ) d y \int_{0}^{s}\int_{0}^{1}\dfrac{1-x^{y}}{1-x}dx dy = \int_{0}^{s}\sum_{k=1}^{+\infty}\dfrac{y}{k(y+k)}dy Switching, the integral and summation due to Fubini's Theorem, we get: k = 1 1 k 0 s y y + k d y = k = 1 1 k 0 s 1 k y + k d y \sum_{k=1}^{\infty}\dfrac{1}{k}\int_{0}^{s}\dfrac{y}{y+k}dy = \sum_{k=1}^{\infty}\dfrac{1}{k}\int_{0}^{s}1-\dfrac{k}{y+k} dy = k = 1 1 k ( s k ln ( 1 + s k ) ) = \sum_{k=1}^{\infty}\dfrac{1}{k} \left( s - k\ln\left(1+\dfrac{s}{k} \right) \right) = lim N + s H N k = 1 N ln ( 1 + s k ) = \lim_{N \rightarrow +\infty} sH_{N} - \sum_{k=1}^{N} \ln\left( 1+ \dfrac{s}{k} \right) = lim N + s H N ln ( ( s + 1 1 ) ( s + 2 2 ) ( s + N N ) ) = \lim_{N \rightarrow +\infty} sH_{N} - \ln\left( \left(\dfrac{s+1}{1}\right)\left(\dfrac{s+2}{2}\right)\cdots\left(\dfrac{s+N}{N} \right) \right) = lim N + s H N ln ( ( s + N ) ! s ! N ! ) = \lim_{N \rightarrow +\infty} sH_{N} - \ln\left( \dfrac{(s+N)!}{s!N!} \right) Now, ln ( ( s + N ) ! s ! N ! ) = ln ( Γ ( s + N + 1 ) Γ ( s + 1 ) Γ ( N + 1 ) ) ln ( Γ ( s + 1 ) ) + s ln ( N + c ) ; N + \ln\left( \dfrac{(s+N)!}{s!N!} \right) = \ln\left( \dfrac{\Gamma(s+N+1)}{\Gamma(s+1)\Gamma(N+1)} \right) \sim -\ln(\Gamma(s+1)) + s\ln(N+c) ; N \rightarrow +\infty For some constant c c . Hence we have 0 s 0 1 1 x y 1 x d x d y = ln ( Γ ( s + 1 ) ) + lim N + s ( H N ln ( N + c ) ) = ln ( Γ ( s + 1 ) ) + s γ \int_{0}^{s}\int_{0}^{1}\dfrac{1-x^{y}}{1-x}dx dy = \ln(\Gamma(s+1)) +\lim_{N \rightarrow +\infty} s\left( H_{N} - \ln(N+c) \right) = \ln(\Gamma(s+1)) +s\gamma Plugging s = 1.5 s= 1.5 0 3 2 0 1 1 x y 1 x d x d y = 3 2 γ + ln ( 3 4 π ) \int_{0}^{\frac{3}{2}}\int_{0}^{1}\dfrac{1-x^{y}}{1-x}dx dy = \dfrac{3}{2}\gamma + \ln\left(\dfrac{3}{4}\sqrt{\pi}\right) making answer as A + B + C + D = 11 . A+B+C+D = \boxed{11}.

(+1) Nice answer. I'd like to invite you to participate in the Integration Contest Season 3 :)

Ishan Singh - 4 years, 6 months ago

Unfortunately, you cannot have D D be any real number, since we could have \frac{ \sqrt{ pi } { 4 } = \frac { pi ^ D } { C } for any integer C C .

I've changed it to "rational number", which makes D D uniquely determined.

Calvin Lin Staff - 4 years, 6 months ago

Using H y = ψ ( y + 1 ) + γ \displaystyle H_y=\psi(y+1)+\gamma and integral representation of harmonic numbers the evaluation would be,

0 1.5 ( ψ ( 1 + y ) + γ ) = 3 2 γ + [ ln Γ ( 1 + y ) ] 0 1.5 = 3 2 γ + ln ( 3 4 π ) \displaystyle \int_0^{1.5} \left(\psi(1+y)+\gamma\right) = \frac{3}{2}\gamma +[\ln\Gamma(1+y)]_0^{1.5}=\frac{3}{2}\gamma+\ln\left(\frac{3}{4}\sqrt{\pi}\right)

Thus A + B + C + D = 11 \boxed{A+B+C+D=11}

Same method bro....

Rohan Shinde - 2 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...