∫ 0 2 3 ∫ 0 1 1 − x 1 − x y d x d y = B A γ + ln ( C A π 1 / D )
If the above equation is true for positive integers A , B , C and D with g cd ( A , B ) = g cd ( A , C ) = 1 , find A + B + C + D .
Notation: γ ≈ 0 . 5 7 7 2 denotes the Euler-Mascheroni constant .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
(+1) Nice answer. I'd like to invite you to participate in the Integration Contest Season 3 :)
Unfortunately, you cannot have D be any real number, since we could have \frac{ \sqrt{ pi } { 4 } = \frac { pi ^ D } { C } for any integer C .
I've changed it to "rational number", which makes D uniquely determined.
Using H y = ψ ( y + 1 ) + γ and integral representation of harmonic numbers the evaluation would be,
∫ 0 1 . 5 ( ψ ( 1 + y ) + γ ) = 2 3 γ + [ ln Γ ( 1 + y ) ] 0 1 . 5 = 2 3 γ + ln ( 4 3 π )
Thus A + B + C + D = 1 1
Same method bro....
Problem Loading...
Note Loading...
Set Loading...
From the definition of Harmonic Numbers , it follows that: ∫ 0 1 1 − x 1 − x n d x = H n For every positive integer n , we have that m → + ∞ lim [ H m − H m + n ] = 0 Adding H n to both sides gives H n = m → + ∞ lim [ H m − ( H m + n − H n ) ] = m → + ∞ lim [ ( k = 1 ∑ m k 1 ) − ( k = 1 ∑ m n + k 1 ) ] = k = 1 ∑ + ∞ [ k 1 − n + k 1 ] = n k = 1 ∑ + ∞ k ( n + k ) 1 . Therefore: H n = n k = 1 ∑ + ∞ k ( n + k ) 1 Getting to the general integral: ∫ 0 s ∫ 0 1 1 − x 1 − x y d x d y = ∫ 0 s k = 1 ∑ + ∞ k ( y + k ) y d y Switching, the integral and summation due to Fubini's Theorem, we get: k = 1 ∑ ∞ k 1 ∫ 0 s y + k y d y = k = 1 ∑ ∞ k 1 ∫ 0 s 1 − y + k k d y = k = 1 ∑ ∞ k 1 ( s − k ln ( 1 + k s ) ) = N → + ∞ lim s H N − k = 1 ∑ N ln ( 1 + k s ) = N → + ∞ lim s H N − ln ( ( 1 s + 1 ) ( 2 s + 2 ) ⋯ ( N s + N ) ) = N → + ∞ lim s H N − ln ( s ! N ! ( s + N ) ! ) Now, ln ( s ! N ! ( s + N ) ! ) = ln ( Γ ( s + 1 ) Γ ( N + 1 ) Γ ( s + N + 1 ) ) ∼ − ln ( Γ ( s + 1 ) ) + s ln ( N + c ) ; N → + ∞ For some constant c . Hence we have ∫ 0 s ∫ 0 1 1 − x 1 − x y d x d y = ln ( Γ ( s + 1 ) ) + N → + ∞ lim s ( H N − ln ( N + c ) ) = ln ( Γ ( s + 1 ) ) + s γ Plugging s = 1 . 5 ∫ 0 2 3 ∫ 0 1 1 − x 1 − x y d x d y = 2 3 γ + ln ( 4 3 π ) making answer as A + B + C + D = 1 1 .