Harmony in the world!

Calculus Level 5

k = 1 ( 1 ) ( k + 1 ) H k k \large \displaystyle \sum_{k=1}^{\infty} \dfrac{(-1)^{(k+1)}H_{k}}{k}

If the above sum can be expressed in the form ζ ( P ) R ln 2 R P , \large \dfrac{\zeta(P)}{R} - \dfrac{\ln^{2} R}{P} \; , where P P and R R are positive integers, find P + R P+R .

Notation : H n H_n denotes the n th n^\text{th} harmonic number , H n = 1 + 1 2 + 1 3 + + 1 n H_n = 1 + \dfrac12 + \dfrac13 + \cdots + \dfrac1n .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Mar 10, 2016

There is a typo in the question: the sum should be from 1 1 to \infty , and not from 0 0 to \infty .

Starting from the generating function for the harmonic numbers n 1 H n x n = ln ( 1 x ) 1 x x < 1 , \sum_{n-1}^\infty H_n x^n \; = \; -\frac{\ln(1-x)}{1-x} \qquad \qquad |x| < 1 \;, we obtain n = 1 H n n x n = 0 x ln ( 1 u ) u ( 1 u ) d u x < 1 , \sum_{n=1}^\infty \frac{H_n}{n} x^n \; = \; -\int_0^x \frac{\ln(1-u)}{u(1-u)}\,du \qquad \qquad |x| < 1 \;, and hence that n = 1 ( 1 ) n 1 H n n x n = 0 x ln ( 1 + u ) u ( 1 + u ) d u x < 1 . \sum_{n=1}^\infty \frac{(-1)^{n-1}H_n}{n}x^n \; = \; \int_0^x \frac{\ln (1+u)}{u(1+u)}\,du \qquad \qquad |x| < 1 \;. Letting x 1 x \to 1 we deduce that n = 1 ( 1 ) n 1 H n n = 0 1 ln ( 1 + u ) u ( 1 + u ) d u = 0 1 ln ( 1 + u ) [ 1 u 1 1 + u ] d u = n = 1 ( 1 ) n 1 n 0 1 u n 1 d u 0 1 ln ( 1 + u ) 1 + u d u = n = 1 ( 1 ) n 1 n 2 [ 1 2 ln ( 1 + u ) 2 ] 0 1 = 1 2 ζ ( 2 ) 1 2 ( ln 2 ) 2 \begin{array}{rcl} \displaystyle \sum_{n=1}^\infty \frac{(-1)^{n-1}H_n}{n} & = & \displaystyle \int_0^1 \frac{\ln(1+u)}{u(1+u)}\,du \\ & = & \displaystyle \int_0^1 \ln(1+u)\left[ \frac{1}{u} - \frac{1}{1+u}\right]\,du \\ & = & \displaystyle \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n} \int_0^1 u^{n-1}\,du - \int_0^1 \frac{\ln(1+u)}{1+u}\,du \\ & = & \displaystyle \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n^2} - \Big[\tfrac12\ln(1+u)^2\Big]_0^1 \\ & = & \tfrac12\zeta(2) - \tfrac12(\ln2)^2 \end{array} so that P = R = 2 P=R=2 , making the answer 4 \boxed{4} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...