Harry Potter's Magical Geometry!

Geometry Level 4

In the given figure , Δ A B C \Delta ABC is an equilateral triangle with side as 1 unit.

The given circle is the in-circle of Δ A B C \Delta ABC

If Area of red colored region can be expressed as:

a b c d \dfrac{a\sqrt{b} - c}{d} where a , b , c , d N a,b,c,d\in \mathbb{N} , b b is independent of a perfect square ,

Find a + b + c + d a + b + c + d


Details and Assumptions :-

  • Take π \pi as 22 7 \dfrac{22}{7} .


The answer is 214.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Nihar Mahajan
Mar 11, 2015

Area of Δ A B C = 3 4 × 1 2 = 3 4 \Delta ABC = \dfrac{\sqrt {3}}{4} \times 1^2 =\dfrac{\sqrt {3}}{4}

Semi-perimeter s = 1 + 1 + 1 2 = 3 2 s = \dfrac{1+1+1}{2} = \dfrac{3}{2} , Let r r be the inradius.

Area of Δ A B C = r . s 3 4 = 3 r 2 r = 3 6 \Delta ABC = r.s \Rightarrow \dfrac{\sqrt {3}}{4}= \dfrac{3r}{2} \Rightarrow r = \dfrac{\sqrt {3}}{6}

Area of in-circle = π r 2 = 22 7 × ( 3 6 ) 2 = 22 7 × 3 36 = 11 42 \pi r^2 = \dfrac{22}{7} \times \left(\dfrac{\sqrt {3}}{6}\right)^2 = \dfrac{22}{7} \times \dfrac{3}{36} = \dfrac{11}{42}

Area of shaded region = Area of triangle ABC - Area of in-circle 2 \text{Area of shaded region} = \dfrac{\text{Area of triangle ABC - Area of in-circle}}{2}

Area of shaded region = 3 4 11 42 2 = 21 3 22 168 \text{Area of shaded region} = \dfrac{\dfrac{\sqrt {3}}{4} - \dfrac{11}{42}}{2} = \dfrac{21\sqrt{3} - 22}{168}

a + b + c + d = 21 + 3 + 22 + 168 = 214 \Rightarrow a+b+c+d = 21 + 3 + 22 + 168 = \huge\color{#D61F06}{\boxed{214}}

Overrated! Good question though!

Mehul Arora - 6 years, 3 months ago

Log in to reply

Thanks!!!!!!

Nihar Mahajan - 6 years, 3 months ago
Paola Ramírez
Mar 12, 2015

Area of A B C = 3 4 \triangle ABC=\frac{\sqrt{3}}{4}

The we have that height since A A also is a median and a bisector so radii of the circle will be height 3 = 3 2 3 = 3 6 \frac{\text{height}}{3}=\frac{\frac{\sqrt{3}}{2}}{3}= \frac{\sqrt{3}}{6}

Area of the circle is ( 3 6 ) 2 × 22 7 = 11 42 (\frac{\sqrt{3}}{6})^2\times \frac{22}{7}=\frac{11}{42}

Now shaded area is A B C c i r c l e 2 = 3 4 11 42 2 = 21 3 22 168 \frac{\triangle ABC-circle}{2}=\frac{\frac{\sqrt{3}}{4}-\frac{11}{42}}{2}=\frac{21\sqrt{3}-22}{168}

a + b + c + d = 21 + 3 + 22 + 168 = 214 \therefore a+b+c+d=21+3+22+168=\boxed{214}

I n e q u v i l a t e r a l Δ , A r e a Δ = 3 4 , I n r a d i u s , r = 1 2 c i r c u m r a d i u s R r = 1 2 a b c 4 A r e a = 1 2 1 1 1 4 3 4 = 1 2 3 A r e a o f c i r c l e = 22 7 1 12 = 22 7 12 s h a d e d a r e a = 1 2 { 3 4 22 84 } = 21 3 22 168 . a + b + c + d = 21 + 3 + 22 + 168 = 214 In ~ equvilateral~ \Delta~, Area ~\Delta=\dfrac{\sqrt3} 4, ~~ Inradius,~ r= \frac 12~~circumradius~R\\ \therefore~~r=\frac 12*\dfrac{a*b*c}{4*Area}=\frac 12*\dfrac{1*1*1}{4*\frac{\sqrt3} 4} ~~ =\dfrac 1{2*\sqrt3}~~\implies~Area~of~circle=\dfrac {22} 7 * \dfrac 1 {12}=\dfrac{22}{7*12} \\ \therefore~~shaded~~ area=\frac 12*\left \{\dfrac{\sqrt3} 4- \dfrac{22}{84} \right \}= \dfrac{21\sqrt3 - 22}{168}.\\ a+b+c+d=21+3+22+168= ~~\color{#D61F06}{214}

How is this related to Harry Potter?

Aniswar S K - 4 years, 1 month ago
William Isoroku
Mar 16, 2015

Since the circle is inscribed in an equilateral triangle, the altitude is the perpendicular bisector that goes through the center of the circle. Connect edge B B to the center of the circle, call it O O

Let the perpendicular bisector that starts at A A intersect as D D on B C BC

O D OD is the radius

B O BO is a perpendicular bisector that goes through the center of the circle. Thus, O B C = 30 \angle{OBC}=30 , D O B = 60 \angle{DOB}=60 and O D B = 90 \angle{ODB}=90

Using the properties of 30-60-90 triangle, O D = 1 2 3 OD=\frac { 1 }{ 2\sqrt { 3 } }

Area of this semicircle is π ( 1 2 3 ) 2 2 { \frac { \pi (\frac { 1 }{ 2\sqrt { 3 } } ) }{ 2 } }^{ 2 } which is π 24 \frac{\pi}{24}

Area of an equilateral triangle is 3 4 a 2 \frac { \sqrt { 3 } }{ 4 } { a }^{ 2 }

Substitute a = 1 a=1 and divide by 2 2 , because it's half of the triangle, we get 3 8 \frac { \sqrt { 3 } }{ 8 }

Subtract the area of the half triangle and the semicircle: 3 8 π 24 \frac { \sqrt { 3 } }{ 8 } -\frac { \pi }{ 24 }

Which simplifies to 21 3 22 168 \frac { 21\sqrt { 3 } -22 }{ 168 }

Thus, our answer is a + b + c + d = 21 + 3 + 22 + 168 = 214 a+b+c+d=21+3+22+168=\boxed{214}

Gamal Sultan
Mar 29, 2015

length of the median = (1/2)(square root of 3)

length of the radius = (length of the median)/3 = (1/6)(square root of 3)

area of the red region =

(1/2)(1/2) (1/2)(square root of 3) - (1/2)(22/7) [(1/6)(square root of 3)]^2 =

[(21)(square root of 3) - 22]/168

a = 21 , b = 3 , c = 22 and d = 168

Then

a + b + c + d = 214

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...