Have a infinite problem

Calculus Level 3

1 2 × 1 2 + 1 2 1 2 × 1 2 + 1 2 × 1 2 + 1 2 1 2 × = ? \sqrt {\frac 12} \times \sqrt{\frac 12 + \frac 12 \sqrt {\frac 12}} \times \sqrt{\frac 12 + \frac 12 \times\sqrt{\frac 12 + \frac 12 \sqrt {\frac 12}}} \times \cdots = \, ?

3 π \dfrac3\pi 2 π \dfrac2\pi 1 π \dfrac1\pi 4 π \dfrac4\pi

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aareyan Manzoor
May 14, 2017

so lets write a recursive relation: x 1 = 1 2 = cos ( π 4 ) , x n = 1 + x n 1 2 x_1=\sqrt{\dfrac{1}{2}} =\cos\left(\dfrac{\pi}{4}\right), x_n=\sqrt{\dfrac{1+x_{n-1}}{2}} i claim x n = cos ( π 2 n + 1 ) x_n=\cos\left(\dfrac{\pi}{2^{n+1}}\right) . we can prove this by induction. we see the base case is true. we use the half angle identities to show x n = 1 + x n 1 2 = 1 + cos ( π 2 n ) 2 = cos ( π 2 n + 1 ) x_n=\sqrt{\dfrac{1+x_{n-1}}{2}}=\sqrt{\dfrac{1+\cos\left(\dfrac{\pi}{2^{n}}\right)}{2}}=\cos\left(\dfrac{\pi}{2^{n+1}}\right) that proves that, now lets take the product. lim n k = 2 n cos ( π 2 k ) = lim n 2 n 1 sin ( π 2 n ) k = 2 n cos ( π 2 k ) 2 n 1 sin ( π 2 n ) \lim_{n\to \infty}\prod_{k=2}^n \cos\left(\dfrac{\pi}{2^{k}}\right)=\lim_{n\to \infty}\dfrac{2^{n-1} \sin\left(\dfrac{\pi}{2^{n}}\right)\prod_{k=2}^n \cos\left(\dfrac{\pi}{2^{k}}\right)}{2^{n-1} \sin\left(\dfrac{\pi}{2^{n}}\right)} by using double angle identity,we have 1 = sin ( π 2 ) = 2 cos ( π 4 ) sin ( π 4 ) = 4 cos ( π 4 ) cos ( π 8 ) sin ( π 8 ) = 2 n 1 cos ( π 4 ) cos ( π 8 ) . . . . cos ( π 2 n ) sin ( π 2 n ) 1=\sin\left(\dfrac{\pi}{2}\right)=2\cos\left(\dfrac{\pi}{4}\right)\sin\left(\dfrac{\pi}{4}\right)=4\cos\left(\dfrac{\pi}{4}\right)\cos\left(\dfrac{\pi}{8}\right)\sin\left(\dfrac{\pi}{8}\right)=2^{n-1}\cos\left(\dfrac{\pi}{4}\right)\cos\left(\dfrac{\pi}{8}\right)....\cos\left(\dfrac{\pi}{2^{n}}\right)\sin\left(\dfrac{\pi}{2^{n}}\right) so the limit becomes lim n 2 n 1 sin ( π 2 n ) k = 2 n cos ( π 2 k ) 2 n 1 sin ( π 2 n ) = lim n 1 2 n 1 sin ( π 2 n ) \lim_{n\to \infty}\dfrac{2^{n-1} \sin\left(\dfrac{\pi}{2^{n}}\right)\prod_{k=2}^n \cos\left(\dfrac{\pi}{2^{k}}\right)}{2^{n-1} \sin\left(\dfrac{\pi}{2^{n}}\right)}=\lim_{n\to \infty}\dfrac{1}{2^{n-1} \sin\left(\dfrac{\pi}{2^{n}}\right)} using small-angle approximation we have the limit lim n 1 2 n 1 sin ( π 2 n ) = lim n 1 2 n 1 ( π 2 n ) = 2 π \lim_{n\to \infty}\dfrac{1}{2^{n-1} \sin\left(\dfrac{\pi}{2^{n}}\right)}=\lim_{n\to \infty}\dfrac{1}{2^{n-1} \left(\dfrac{\pi}{2^{n}}\right)}=\boxed{\dfrac{2}{\pi}}

Good problem with limit ;) https://youtu.be/uq5lTACJ-rk

geni percaso - 4 years ago

Great solution! How did you come up with such a solution at this tender age?

Aman Bhandare - 4 years ago

Log in to reply

No offense

Aman Bhandare - 4 years ago

Log in to reply

well i would say experience and a bit of trail and error. my first attemts had riemann sums and telescope, both of which failed. well i think age doesnt really matter because most of our lives are spend in idleness(i spend about80% of my time with tv or friends), so we can select that % and age wont matter.

Aareyan Manzoor - 4 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...