Have fun L'hopitaling this one as well!

Calculus Level 3

lim x 0 x 2 ( [ 4 sin x 3 cos x + 5 2 arcsin 2 ( arctan x ) + 4 ] 2017 1 ) tan ( 2017 x ) ( 1 cos ( sin x ) ) \displaystyle \lim_{x \to 0} \dfrac{x^2 \left( \left[ 4 \sin x - 3 \cos x + \dfrac{5}{2} \arcsin^2 (\arctan x) + 4\right]^{2017} -1 \right) }{\tan (2017x)(1 - \cos(\sin x))}

Calculate the exact value of the above limit.

Hint: The problem is not meant to be laborious actually.


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hobart Pao
Dec 17, 2017

We make use of the following formulas, which come from Taylor expansions:

sin x x , 1 cos x 1 2 x 2 , arctan x x , arcsin x x , tan x x , ( 1 + x ) a 1 a x , a R \sin x \approx x, 1-\cos x \approx \dfrac{1}{2} x^2, \arctan x \approx x, \arcsin x \approx x, \tan x \approx x, (1+x)^a - 1 \approx ax, a \in \mathbb{R}

L = lim x 0 x 2 [ ( 4 x + 1 + 3 ( 1 cos x ) + 5 2 x 2 ) 2017 1 ] 2017 x ( 1 cos x ) L = \displaystyle \lim_{x \to 0} \dfrac{x^2 \left[ \left( 4x + 1 + 3(1- \cos x) + \dfrac{5}{2} x^2 \right)^{2017} - 1 \right] }{2017 x (1- \cos x)}

L = lim x 0 x 2 [ ( 4 x + 1 + 3 2 x 2 + 5 2 x 2 ) 2017 1 ] 2017 x 1 2 x 2 L = \displaystyle \lim_{x \to 0} \dfrac{x^2 \left[ \left( 4x + 1 + \dfrac{3}{2}x^2 + \dfrac{5}{2} x^2 \right)^{2017} - 1\right]}{2017 x \dfrac{1}{2}x^2}

L = 2 lim x 0 ( 4 x + 1 + 4 x 2 ) 2017 1 2017 x L = 2 \displaystyle \lim_{x \to 0} \dfrac{\left( 4x + 1 + 4 x^2 \right)^{2017} - 1}{2017 x }

L = 2 lim x 0 ( 2 x + 1 ) 2 2017 1 2017 x L = 2 \displaystyle \lim_{x \to 0} \dfrac{ (2x+1)^{2 \cdot 2017} - 1}{2017 x }

L = 2 lim x 0 2 2 2017 x 2017 x = 8 L = 2 \displaystyle \lim_{x \to 0} \dfrac{2 \cdot 2 \cdot 2017 x}{2017 x } = \boxed{8}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...