x → 0 lim ln 1 1 6 ( 2 x + 3 − 2 cos x ) ( 1 − cos x ) 5 8
If the above limit equals L , compute lo g 2 L .
Hint: The problem is not meant to be laborious actually.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
x → 0 lim ln 1 1 6 ( 2 x + 3 − 2 cos x ) ( 1 − cos x ) 5 8 = ( x → 0 lim ln 2 ( 2 x + 3 − 2 cos x ) 1 − cos x ) 5 8 = ( x → 0 lim ln 2 ( 2 x + 3 − 2 cos x ) 2 sin 2 ( 2 x ) ) 5 8 = ⎝ ⎛ 2 x → 0 lim ( ln ( 2 x + 3 − 2 cos x ) sin ( 2 x ) ) 2 ⎠ ⎞ 5 8 = ⎝ ⎜ ⎜ ⎛ 2 x → 0 lim ⎝ ⎜ ⎛ 2 x + 3 − 2 cos x 2 + 2 sin x 2 1 cos ( 2 x ) ⎠ ⎟ ⎞ 2 ⎠ ⎟ ⎟ ⎞ 5 8 = ( 2 ( 4 1 ) 2 ) 5 8 = ( 8 1 ) 5 8 = 2 − 1 7 4
L = x → 0 lim ln 1 1 6 ( 2 x + 3 − 2 cos x ) ( 1 − cos x ) 5 8 = x → 0 lim ( ln 2 ( 2 x + 3 − 2 cos x ) 1 − cos x ) 5 8 = x → 0 lim ( 2 x + 3 − 2 cos x 2 ln ( 2 x + 3 − 2 cos x ) ( 2 + sin x ) sin x ) 5 8 = x → 0 lim ( 2 ln ( 2 x + 3 − 2 cos x ) ( 2 + sin x ) sin x ( 2 x + 3 − 2 cos x ) ) 5 8 = x → 0 lim ( 2 x + 3 − 2 cos x 2 ( 2 + sin x ) 2 + 2 ln ( 2 x + 3 − 2 cos x ) cos x cos x ( 2 x + 3 − 2 cos x ) + sin x ( 2 + 2 sin x ) ) 5 8 = ( 8 1 ) 5 8 = 2 − 1 7 4 A 0/0 case, L’H o ˆ pital’s rule applies. Differentiate up and down w.r.t. x A 0/0 case again. Differentiate up and down w.r.t. x
⟹ lo g 2 L = − 1 7 4 .
Problem Loading...
Note Loading...
Set Loading...
As x → 0 , 1 − cos x ≈ 2 1 x 2 and ln ( 1 + x ) ≈ x . This comes from each respective Taylor polynomial. We can apply these two formulas in this limit.
= x → 0 lim ln 1 1 6 ( 2 x + 1 + 2 − 2 cos x ) 2 5 8 1 x 1 1 6 = x → 0 lim ln 1 1 6 ( 2 x + 1 + 2 ( 1 − cos x ) ) 2 5 8 1 x 1 1 6 = x → 0 lim ln 1 1 6 ( 2 x + 1 + x 2 ) 2 5 8 1 x 1 1 6 = x → 0 lim ln 1 1 6 ( x + 1 ) 2 2 5 8 1 x 1 1 6 = x → 0 lim 2 ln 1 1 6 ( x + 1 ) 2 5 8 1 x 1 1 6
= x → 0 lim 2 x 1 1 6 2 5 8 1 x 1 1 6
= x → 0 lim 2 x 1 1 6 2 5 8 1 x 1 1 6
L = 2 5 9 1 ; lo g 2 L = − 5 9