Have fun solving the equation

Algebra Level 4

Find the sum of all the real numbers x x satisfying 2 x x + 1 x = 2. \dfrac{\lfloor 2x \rfloor - \lfloor x+1 \rfloor}{x}=2.


The answer is -1.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Chew-Seong Cheong
Oct 25, 2015

2 x x + 1 x = 2 2 x x + 1 = 2 x 2 x + 2 { x } x 1 = 2 x + 2 { x } 0 { x } < 1 is the fractional part of x x + 1 = 2 { x } 2 { x } \begin{aligned} \frac{\lfloor 2x \rfloor - \lfloor x + 1\rfloor}{x} & = 2 \\ \Rightarrow \color{#3D99F6}{\lfloor 2x \rfloor} - \lfloor x + 1\rfloor & = 2\color{#D61F06}{x} \\ \color{#3D99F6}{2 \lfloor x \rfloor + \lfloor 2\{x\} \rfloor} - \lfloor x \rfloor - 1 & = 2 \color{#D61F06}{\lfloor x \rfloor} + 2 \color{#D61F06}{\{ x \}} \quad \quad \small \color{#3D99F6}{0 \le \{ x \} < 1 \text{ is the fractional part of }x} \\ \lfloor x \rfloor + 1 & = \lfloor 2\{x\} \rfloor - 2 \{ x \} \end{aligned}

Since LHS is integral, RHS must also be integral and there are only two cases when 2 { x } 2\{x\} in the RHS is an integer.

When { x } = 0 : x + 1 = 0 x = 1 x + { x } = 1 + 0 x = 1 \begin{aligned} \text{When } \{x\} = 0: \quad \Rightarrow \lfloor x \rfloor + 1 & = 0 \\ \lfloor x \rfloor & = -1 \\ \lfloor x \rfloor + \{x\} & = -1 + 0 \\ \Rightarrow x & = -1 \end{aligned}

When { x } = 1 2 : x + 1 = 0 x = 1 x + { x } = 1 + 1 2 x = 1 2 \begin{aligned} \text{When } \{x\} = \frac{1}{2}: \quad \Rightarrow \lfloor x \rfloor + 1 & = 0 \\ \lfloor x \rfloor & = -1 \\ \lfloor x \rfloor + \{x\} & = -1 + \frac{1}{2} \\ \Rightarrow x & = -\frac{1}{2} \end{aligned}

Therefore the sum of x x satisfying the equation is 1 1 2 = 1.5 -1 - \frac{1}{2} = \boxed{-1.5} .

How did you arrived at x = 1 2 {x}=\dfrac{1}{2}

Department 8 - 5 years, 7 months ago

Log in to reply

Since 0 { x } < 1 0 \le \{x\} < 1 only when { x } = 0 \{x\} =0 and { x } = 1 2 \{x\} = \frac{1}{2} would make 2 { x } 2\{x\} in the RHS to be an integer 0 0 and 1 1 respectively. Thanks for the question. I have changed the solution a bit.

You have to enter backslash in front of the braces {} to show them on LaTex.

Chew-Seong Cheong - 5 years, 7 months ago

A rather overrated problem. Nice solution by the way Sir.

Shreyash Rai - 5 years, 5 months ago

From Hermite's Identity; 2 x = x + x + 1 2 \left\lfloor 2x \right\rfloor = \left\lfloor x \right\rfloor + \left\lfloor x + \displaystyle \frac{1}{2} \right\rfloor , we get

x + x + 1 2 x + 1 = 2 x \left\lfloor x \right\rfloor + \left\lfloor x + \displaystyle\frac{1}{2} \right\rfloor - \left\lfloor x+1 \right\rfloor = 2x

From x x + 1 = 1 \left\lfloor x \right\rfloor - \left\lfloor x+1 \right\rfloor = -1 which is easily proved.

Therefore, x + 1 2 = 2 x + 1 = 2 ( x + 1 2 ) = 2 x + 1 2 + 2 { x + 1 2 } \left\lfloor x + \displaystyle\frac{1}{2} \right\rfloor = 2x+1 = 2\left(x+\displaystyle\frac{1}{2}\right) = 2\left\lfloor x+\displaystyle\frac{1}{2}\right\rfloor + 2\left\{ x + \displaystyle\frac{1}{2}\right\} .

Which we get x + 1 2 = 2 { x + 1 2 } \left\lfloor x + \displaystyle\frac{1}{2} \right\rfloor = -2\left\{ x + \displaystyle\frac{1}{2}\right\} .

Since we get that 2 < R H S 0 -2 < RHS \leq 0 , therefore, x + 1 2 = 0 , 1 \left\lfloor x + \displaystyle\frac{1}{2} \right\rfloor = 0,-1 .

And from x + 1 2 = 2 x + 1 \left\lfloor x + \displaystyle\frac{1}{2} \right\rfloor = 2x+1 , we know that { x } = 0 , 1 2 \{x\} = 0, \displaystyle\frac{1}{2} because L H S LHS is integer.

If x + 1 2 = 0 \left\lfloor x + \displaystyle\frac{1}{2} \right\rfloor = 0 we get x = 1 2 \boxed{x = \displaystyle -\frac{1}{2}} .

If x + 1 2 = 1 \left\lfloor x + \displaystyle\frac{1}{2} \right\rfloor = -1 we get x = 1 \boxed{x = -1} .

Zee Ell
Oct 27, 2015

My first two steps were similar to Chew-Seong's solution and found that 2x has to be an integer (RHS=LHS).

Then, I also had similar two cases (if 2x is an integer, then it is either odd or even).

Case 1: if 2x is odd, then 2x=2k+1 and x= (2k+1)/2

2k+1-(k+1)=2k+1

k=-1

x=-0.5

Case 2: if 2x is even, 2x=2k and x=k

2k - (k+1) = 2k

k=-1

x=-1

Finally, I determined their sum for the answer: -0.5 + -1 = -1.5.

(And this way, avoided the use of the fractional parts.)

Aareyan Manzoor
Oct 24, 2015

we get that [ 2 x ] [ x + 1 ] = 2 x let frac(x) denote fractional part of x.we find 2 cases. case 1: f r a c ( x ) < . 5 [ 2 x ] = 2 [ x ] , [ x + 1 ] = [ x ] + 1 [ 2 x ] [ x + 1 ] = 2 x [ x ] 1 = 2 x note that [x] is always an integer, which means [x]-1 is an integer and so is 2x. this implies f r a c ( x ) = . 5 ( rejected since it contradiicts frac(x)<.5) o r 0 [ x ] = x x 1 = 2 x x = 1 case 2: f r a c ( x ) . 5 [ 2 x ] = 2 [ x ] + 1 , [ x + 1 ] = [ x ] + 1 2 [ x ] + 1 [ x ] 1 = [ x ] = 2 x using same logic as before,: f r a c ( x ) = . 5 o r 0 ( r e j e c t e d ) [ x ] = x . 5 x . 5 = 2 x x = . 5 1 . 5 = 1.5 \begin{array}{c}\text{ }\text{we get that}\quad [2x]-[x+1]=2x\\ \text{let frac(x) denote fractional part of x.we find 2 cases.}\\ \text{case 1:}frac(x)<.5\Longrightarrow [2x]=2[x],[x+1]=[x]+1\\ [2x]-[x+1]=2x\Longrightarrow [x]-1=2x\\ \text{note that [x] is always an integer, which means [x]-1 is an integer and so is 2x. this implies}\\ frac(x)=.5(\text{rejected since it contradiicts frac(x)<.5)} \quad or\quad 0\\ [x]=x\Longrightarrow x-1=2x\Longrightarrow x=-1\\ \text{case 2:} frac(x)\geq .5\Longrightarrow [2x]=2[x]+1,[x+1]=[x]+1\\ 2[x]+1-[x]-1=[x]=2x\\ \text{using same logic as before,:} frac(x)=.5\quad or\quad 0(rejected)\\ [x]=x-.5\Longrightarrow x-.5=2x\Longrightarrow x=-.5\\ -1-.5=\boxed{-1.5}\end{array}

Righved K
Nov 25, 2015

Anyone with graphical approach...I did by this:(/

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...