Evaluate ∫ 0 ∞ e − x 2 cos 2 x d x
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Relevant wiki: Contour Integration
Since the integrand is even ∫ 0 ∞ e − x 2 cos 2 x d x = 2 1 ∫ − ∞ ∞ e − x 2 cos 2 x d x and since cos 2 x = Re [ e 2 i x ] , 2 1 ∫ − ∞ ∞ e − x 2 cos 2 x d x = 2 1 Re ∫ − ∞ ∞ e − x 2 + 2 i x d x = 2 e 1 Re ∫ − ∞ ∞ e − ( x − i ) 2 d x
Now, e − z 2 is entire and it goes to zero uniformly on Re [ z ] = ± R , − 1 ≤ Im [ z ] ≤ 0 as R → ∞ , so we can conclude by contour integration around the rectangle with vertices ± R , ± R − i that ∫ − ∞ ∞ e − ( x − i ) 2 d x = ∫ − ∞ ∞ e − x 2 d x
This last integral is real-valued, so the integral in question equals 2 e 1 ∫ − ∞ ∞ e − x 2 d x = 2 e 1 ⋅ π ≈ 0 . 3 2 6 0 2 4 6 6 6
Solution without complex numbers:
A problem like this is clearly meant to be solved by relating it to the Gaussian integral. However, the connection is not obvious so let's try the following standard trick: Let F ( t ) = ∫ 0 ∞ e − x 2 cos ( 2 t x ) d x . Then F ′ ( t ) = ∫ 0 ∞ e − x 2 ( − 2 x sin ( 2 t x ) ) d x = ∫ 0 ∞ − 2 x e − x 2 sin ( 2 t x ) d x . The previous form makes an integration by parts obvious: let u = sin ( 2 t x ) ⟹ d u = 2 t cos ( 2 t x ) and d v = − 2 x e − x 2 ⟹ v = e − x 2 . Thus:
F ′ ( t ) = sin ( 2 t x ) e − x 2 ∣ ∣ ∣ 0 ∞ − ∫ 0 ∞ e − x 2 2 t cos ( 2 t x ) = 0 − 2 t ∫ 0 ∞ e − x 2 cos ( 2 t x ) = − 2 t F ( t ) This is now a differential equation that can be solved through standard methods: F ′ ( t ) = − 2 t F ( t ) ⟹ F ( t ) F ′ ( t ) = − 2 t ⟹ lo g F ( t ) = − t 2 + C ⟹ F ( t ) = k e − t 2
We only need to find the constant k but notice that k = k e − 0 2 = F ( 0 ) = ∫ 0 ∞ e − x 2 d x = 2 π . Thus, F ( t ) = 2 π e − t 2 . For the problem, we care about F ( 1 ) = 2 e π
Problem Loading...
Note Loading...
Set Loading...
I = ∫ 0 ∞ e − x 2 cos ( 2 x ) d x = ∫ 0 ∞ e − x 2 ⋅ 2 e 2 x i + e − 2 x i d x = 2 1 ∫ 0 ∞ ( e ( i x + 1 ) 2 − 1 + e ( i x − 1 ) 2 − 1 ) d x = 4 e i π ( erfi ( i x + 1 ) + erfi ( i x − 1 ) ) ∣ ∣ ∣ ∣ 0 ∞ = 4 e i π ( − i erf ( − x + i ) − i erf ( − x − i ) ) ∣ ∣ ∣ ∣ 0 ∞ = 4 e π ( 1 + erf ( i ) + 1 + erf ( − i ) ) = 4 e π ( 2 + i erf ( 1 ) − i erf ( 1 ) ) = 2 e π ≈ 0 . 3 2 6 By Euler’s formula erfi ( z ) = π 2 ∫ e z 2 d z Note that erfi ( z ) = − i erf ( i z )