Have fun with series (2020)

Calculus Level 3

How many of the following series converge?

A = 1 2 + 1 3 + 1 5 + 1 7 + 1 11 + 1 13 + 1 17 + 1 19 + 1 23 + B = 1 2 3 1 3 3 + 1 5 3 1 7 3 1 1 1 3 + 1 1 3 3 1 1 7 3 1 1 9 3 1 2 3 3 + C = 1 2 + 1 3 1 2 + 1 5 + 1 6 2 7 + 1 8 + 1 9 1 5 + 1 11 + 1 12 2 13 + \small \begin{aligned} A & = \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{11} + \frac{1}{13} + \frac{1}{17} + \frac{1}{19} + \frac{1}{23} + \ldots \\ B & = \frac{1}{\sqrt{2^{3}}} \red - \frac{1}{\sqrt{3^{3}}} \blue + \frac{1}{\sqrt{5^{3}}} \red - \frac{1}{\sqrt{7^{3}}} \red - \frac{1}{\sqrt{11^{3}}} \blue + \frac{1}{\sqrt{13^{3}}} \red - \frac{1}{\sqrt{17^{3}}} \red - \frac{1}{\sqrt{19^{3}}} \red - \frac{1}{\sqrt{23^{3}}} \blue + \ldots \\ C & = \frac{1}{2} + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{6} - \frac{2}{7} + \frac{1}{8} + \frac{1}{9} - \frac{1}{5} + \frac{1}{11} + \frac{1}{12} - \frac{2}{13} + \ldots\end{aligned}

Note: Series B B is strictly not an alternating series.

2 3 1 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chris Lewis
Feb 18, 2020

Series (a) diverges; the others converge.

(a) is a pretty well known divergent series; it even has its own Wikipedia page , which lists several proofs.

(b) is absolutely convergent : the sum of the absolute values of the terms in B B is

n = 1 1 p n 3 / 2 < n = 1 1 n 3 / 2 = ζ ( 3 2 ) 2.61 \sum_{n=1}^{\infty} \left| \frac{1}{p_n^{3/2}}\right| < \sum_{n=1}^{\infty} \left| \frac{1}{n^{3/2}}\right| = \zeta \left( \frac32 \right) \approx 2.61

where p n p_n is the n t h n^{th} prime number and ζ \zeta is the Reimann zeta function.

(c) also converges. The pattern is a bit easier to spot if we rewrite it as S = 1 2 + 1 3 2 4 + 1 5 + 1 6 2 7 + S=\frac12+\frac13-\frac24+\frac15+\frac16-\frac27+\cdots . We have

S = n = 1 1 3 n 1 + 1 3 n 2 3 n + 1 = n = 1 9 n 1 27 n 3 3 n note all terms are positive < n = 1 9 n 27 n 3 3 n = n = 1 3 9 n 2 1 < n = 1 3 8 n 2 \begin{aligned}S &= \sum_{n=1}^{\infty} \frac{1}{3n-1}+\frac{1}{3n}-\frac{2}{3n+1} \\ &= \sum_{n=1}^{\infty} \frac{9n-1}{27n^3-3n} \quad \text{\blue{note all terms are positive}} \\ &<\sum_{n=1}^{\infty} \frac{9n}{27n^3-3n} \\ &=\sum_{n=1}^{\infty} \frac{3}{9n^2-1} \\ &<\sum_{n=1}^{\infty} \frac{3}{8n^2} \end{aligned}

which converges to 3 8 ζ ( 2 ) = π 2 16 0.6 \frac38 \zeta(2)=\frac{\pi^2}{16}\approx 0.6 ; hence series (c) also converges. (NB: I've taken very lazy bounds here - but this is still enough to prove convergence)

In b) you can say that the series is absolutely convergent and this implies that the series is convergent. You have to be careful in b) because it is not an alternating series. Look at Formulation

Guillermo Templado - 1 year, 3 months ago

Log in to reply

Thanks - I missed the pattern in the sign changes for B B before you edited the problem. Solution is fixed now.

Chris Lewis - 1 year, 3 months ago

Log in to reply

Correct .You also can say that the series is absolutely convergent because \displaystyle \prod_{p \in set of prime numbers} ( 1 - \frac{1}{p^{\frac{3}{2}}) = \frac{1}{\zeta(3/2)} , i. e, this product converges. See Convergencia criteria

Guillermo Templado - 1 year, 3 months ago
Chew-Seong Cheong
Feb 18, 2020

The prime zeta function is defined as:

P ( s ) = n > 0 1 p ( n ) P(s) = \sum_{n > 0} \frac 1{p(n)}

where p ( n ) p(n) is the n n th prime number. P ( s ) P(s) converges if ( s ) > 1 \Re(s) > 1 . Since A = P ( 1 ) A = P(1) , series A A diverges . It is proven that the sum of all primes, which is series A A , diverges (see proof ).

Series B B can be written as

B = n > 0 1 p ( n ) 3 2 + 2 n > 0 1 p ( n ( n + 1 ) 2 ) 3 2 = P ( 3 2 ) + 2 Q B = - \sum_{n >0} \frac 1{p(n)^\frac 32} + 2 \sum_{n >0} \frac 1{p\left(\frac {n(n+1)}2 \right)^\frac 32} = - P\left(\frac 32\right) + 2 Q

Since, other than the first term, series Q < P ( 3 2 ) Q < P\left(\frac 32\right) monotonically and P ( 3 2 ) P\left(\frac 32\right) converges, Q Q converges and therefore series B B converges.

Series C C converges:

C = 1 2 + 1 3 2 4 + 1 5 + 1 6 2 7 + 1 8 + 1 9 2 10 + = 1 2 + 1 3 1 4 1 4 + 1 5 + 1 6 1 7 1 7 + 1 8 + 1 9 1 10 1 10 + = 1 2 + 1 12 1 20 + 1 42 1 56 + 1 90 1 110 + \begin{aligned} C & = \frac 12 + \frac 13 \blue{- \frac 24} + \frac 15 + \frac 16 \blue{- \frac 27} + \frac 18 + \frac 19 \blue{- \frac 2{10}} + \cdots \\ & = \frac 12 + \frac 13 \blue{- \frac 14 - \frac 14} + \frac 15 + \frac 16 \blue{- \frac 17 -\frac 17} + \frac 18 + \frac 19 \blue{- \frac 1{10} - \frac 1{10}} + \cdots \\ & = \frac 12 + \frac 1{12} - \frac 1{20} + \frac 1{42} - \frac 1{56} + \frac 1{90} - \frac 1{110} + \cdots \end{aligned}

Series C C is an alternating series with a n |a_n| decreases monotonically and lim n a n = 0 \displaystyle \lim_{n \to \infty} a_n = 0 , by alternating series test , series C C converges.

Therefore 2 \boxed 2 of the series converge.


Bonus : Finding C C

C = 1 2 + 1 3 2 4 + 1 5 + 1 6 2 7 + 1 8 + 1 9 2 10 + = 2 ( 2 1 2 1 3 + 2 4 1 5 1 6 + 2 7 1 8 1 9 + 2 10 ) = 2 2 ( cos 0 + cos 2 3 π 2 + cos 4 3 π 3 + cos 2 π 4 + cos 8 3 π 5 + ) = 2 2 ( 1 + e 2 3 π i 2 + e 4 3 π i 3 + e 2 π i 4 + e 8 3 π i 5 + ) = 2 + 2 ( ln ( 1 e 2 3 π i ) e 2 3 π i ) = 2 + 2 ( ln ( 3 2 3 2 i ) 1 2 + 3 2 i ) = 2 + 2 ( ln ( 3 e π 6 i ) 1 2 + 3 2 i ) = 2 + 2 ( 3 ln 3 π i 3 + 3 3 i ) = 2 2 3 ( ( 3 ln 3 π i ) ( 1 + 3 i 1 + 3 ) = 2 ln 3 2 3 π 6 \begin{aligned} C & = \frac 12 + \frac 13 - \frac 24 + \frac 15 + \frac 16 - \frac 27 + \frac 18 + \frac 19 - \frac 2{10} + \cdots \\ & = 2 - \left(2 - \frac 12 - \frac 13 + \frac 24 - \frac 15 - \frac 16 + \frac 27 - \frac 18 - \frac 19 + \frac 2{10} - \cdots\right) \\ & = 2 - 2 \left(\cos 0 + \frac {\cos \frac 23\pi}2 + \frac {\cos \frac 43\pi}3 + \frac {\cos 2\pi}4 + \frac {\cos \frac 83\pi}5 + \cdots\right) \\ & = 2 - 2 \Re \left(1 + \frac {e^{\frac 23\pi i}}2 + \frac {e^{\frac 43\pi i}}3 + \frac {e^{2\pi i}}4 + \frac {e^{\frac 83\pi i}}5 + \cdots\right) \\ & = 2 + 2 \Re \left(\frac {\ln (1-e^{\frac 23 \pi i})}{e^{\frac 23 \pi i}} \right) = 2 + 2 \Re \left(\frac {\ln \left(\frac 32-\frac {\sqrt 3}2i \right)}{-\frac 12 + \frac {\sqrt 3}2i} \right) \\ & = 2 + 2 \Re \left(\frac {\ln \left(\sqrt 3 e^{-\frac \pi 6 i}\right)}{-\frac 12 + \frac {\sqrt 3}2i} \right) = 2 + 2 \Re \left(\frac {3\ln 3 - \pi i}{-3 + 3\sqrt 3 i} \right) \\ & = 2 - \frac 23 \Re \left(\frac {(3\ln 3 - \pi i)(1+\sqrt 3 i}{1+3} \right) \\ & = 2 - \frac {\ln 3}2 - \frac {\sqrt 3 \pi}6 \end{aligned}

You made the same mistake as me with series B - check the signs, it's not strictly alternating.

Chris Lewis - 1 year, 3 months ago

Log in to reply

OK. I will redo the solution.

Chew-Seong Cheong - 1 year, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...