Have seen before

Algebra Level 4

1 + 1 2 2 + 1 3 2 + . . . = π 2 6 \large 1 + \frac{1}{2^2} + \frac{1}{3^2} + ... = \frac{\pi^2}{6}

Given the above, find n n that satisfies the equation below.

1 + 1 3 2 + 1 5 2 + . . . = π 2 n \large 1 + \frac{1}{3^2} + \frac{1}{5^2} + ... = \frac{\pi^2}{n}


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 14, 2016

S = 1 + 1 3 2 + 1 5 2 + 1 7 2 + . . . = 1 + 1 2 2 + 1 3 2 + 1 4 2 + 1 5 2 + 1 6 2 + 1 7 2 + . . . ( 1 2 2 + 1 4 2 + 1 6 2 + . . . ) = 1 + 1 2 2 + 1 3 2 + 1 4 2 + . . . 1 2 2 ( 1 + 1 2 2 + 1 3 2 + 1 4 2 + . . . ) = ( 1 1 4 ) π 2 6 = 3 4 π 2 6 = π 2 8 \begin{aligned} S & = 1 + \frac 1{3^2} + \frac 1{5^2} + \frac 1{7^2} + ... \\ & = 1 + {\color{#D61F06}\frac 1{2^2}} + \frac 1{3^2} + {\color{#D61F06}\frac 1{4^2}} + \frac 1{5^2} + {\color{#D61F06}\frac 1{6^2}} + \frac 1{7^2} + ... - \left( {\color{#D61F06}\frac 1{2^2}} + {\color{#D61F06}\frac 1{4^2}} + {\color{#D61F06}\frac 1{6^2}} + ...\right) \\ & = 1 + \frac 1{2^2} + \frac 1{3^2} + \frac 1{4^2} + ... - \frac 1{2^2} \left(1 + \frac 1{2^2} + \frac 1{3^2} + \frac 1{4^2} + ... \right) \\ & = \left(1 - \frac 14 \right) \frac {\pi^2}6 \\ & = \frac 34 \cdot \frac {\pi^2}6 \\ & = \frac {\pi^2}8 \end{aligned}

n = 8 \implies n = \boxed{8}

@Priyanshu Mishra , please don't use "huge" in your question. It makes it look childish. Just use the standard three dots " . . . ... " and no more no less.

Chew-Seong Cheong - 4 years, 7 months ago

Log in to reply

Okay.

I wanted the solution. Yours one is very good.

Priyanshu Mishra - 4 years, 7 months ago
Viki Zeta
Nov 14, 2016

1 + 1 2 2 + 1 3 2 + = 1 n 2 = π 2 6 x = 1 n 2 = π 2 6 x 4 = 1 4 1 n 2 = π 2 24 x = 1 + 1 2 2 + 1 3 2 + x 4 = 1 2 2 + 1 4 2 + 1 6 2 + π 2 6 π 2 24 = 1 + 1 3 2 + 1 5 2 + 1 + 1 3 2 + 1 5 2 + = π 2 8 n = 8 1 + \dfrac{1}{2^2} + \dfrac{1}{3^2} + \ldots = \sum \ \dfrac{1}{n^2} = \dfrac{\pi^2}{6} \\ x = \sum \ \dfrac{1}{n^2} = \dfrac{\pi^2}{6} \\ \dfrac{x}{4} = \dfrac{1}{4} \sum \ \dfrac{1}{n^2} = \dfrac{\pi^2}{24}\\ \ \ \ \ \ x = 1 + \dfrac{1}{2^2} + \dfrac{1}{3^2} + \ldots\\ - \dfrac{x}{4} = \dfrac{1}{2^2} + \dfrac{1}{4^2} + \dfrac{1}{6^2} + \ldots \\ \dfrac{\pi^2}{6} - \dfrac{\pi^2}{24} = 1 + \dfrac{1}{3^2} + \dfrac{1}{5^2} + \ldots \\ \boxed{1 + \dfrac{1}{3^2} + \dfrac{1}{5^2} + \ldots = \dfrac{\pi^2}{8} \\ \therefore n = 8}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...