Have Time for Cube Roots?

Algebra Level 4

If f ( x ) = 1 x 2 + 2 x + 1 3 + x 2 + x 3 + x 2 3 f(x) = \frac { 1 }{ \sqrt [ 3 ]{ { x }^{ 2 }+2x+1 } +\sqrt [ 3 ]{ { x }^{ 2 }+x } +\sqrt [ 3 ]{ { x }^{ 2 } } }

Evaluate n = 1 2196 f ( n ) \displaystyle \sum_{n=1}^{2196} f(n)


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

U Z
Dec 22, 2014

1 = 1 \boxed{ 1 = 1}

( x + 1 ) x = 1 (x + 1) - x = 1

a 3 b 3 = ( a b ) ( a 2 + a b + b 2 ) a^{3} - b^{3} = (a - b)( a^{2} + ab + b^{2})

( x + 1 3 x 3 ) ( ( x + 1 ) 2 3 + ( x + 1 ) ( x ) 3 + x 2 3 ) = 1 ( \sqrt[3]{x + 1} - \sqrt[3]{x})( \sqrt[3]{(x + 1)^{2}} + \sqrt[3]{(x + 1)(x)} + \sqrt[3]{x^{2}}) = 1

Thus , the f ( x ) = x + 1 3 x 3 f(x) = \sqrt[3]{x + 1} - \sqrt[3]{x}

f ( 1 ) + f ( 2 ) + . . . . . . + f ( 2196 ) f(1) + f(2) + ...... + f(2196)

2 3 1 3 + 3 3 2 3 + . . . . . + 2197 3 2196 3 \sqrt[3]{2} - \sqrt[3]{1} + \sqrt[3]{3} - \sqrt[3]{2} + ..... + \sqrt[3]{2197} - \sqrt[3]{2196}

2197 3 1 3 = 13 1 = 12 \sqrt[3]{2197} - \sqrt[3]{1} = 13 -1 = 12

Did the same except the fact that I didn't square that 1 before my solution. Can I ask what is that? :P

Kartik Sharma - 6 years, 5 months ago

I too did the same \Large\smile

Mehul Chaturvedi - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...