HCF Notion #2

( 1 0. 3 & 0. 3 ) \Large \left( \color{skyblue}{\dfrac{1}{0.\overline{3}} \quad \color{#D61F06}{\&} \quad 0.\overline{3}} \right)

Find the highest common factor (H.C.F.) of the above two numbers.


Join the Brilliant Classes and enjoy the excellence. Also checkout Foundation Assignment #2 for JEE.
1 0. 3 \dfrac{1}{0.\overline{3}} 1 Doesn't exist. None of the given choices. ( 0. 3 ) 2 (0.\overline{3})^2 1 ( 0. 3 ) 2 \dfrac{1}{(0.\overline{3})^2} 0. 3 0.\overline{3}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sandeep Bhardwaj
May 27, 2015

Since we know that 0. 3 = 1 3 \boxed{0.\overline{3}=\dfrac{1}{3}} . (How ? : Try to figure it out)

So the given no. are equivalent to :

( 3 & 1 3 ) \Large \left( \color{skyblue}{3 \quad \color{#D61F06}{\&} \quad \dfrac{1}{3}} \right)

H.C.F. of fractions is calculated as : H.C.F. of ( a b & c d ) = H . C . F . ( a , c ) L . C . M . ( c , d ) \boxed{\text{H.C.F. of} \left( \dfrac{a}{b} \ \& \ \dfrac{c}{d} \right)=\dfrac{H.C.F. (a, c)}{L.C.M.(c,d)}}

\therefore

H.C.F. of ( 3 1 & 1 3 ) = H . C . F . ( 3 , 1 ) L . C . M . ( 1 , 3 ) = 1 3 = 0. 3 \text{H.C.F. of} \left( \dfrac{3}{1} \ \& \ \dfrac{1}{3} \right)=\dfrac{H.C.F. (3, 1)}{L.C.M.(1,3)}=\dfrac{1}{3}=\boxed{0.\overline{3}}

enjoy !

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...