Height of Elegance!

Algebra Level 4

The sequence of integers { a i } i = 0 { \left\{ { a }_{ i } \right\} }_{ i=0 }^{ \infty } satisfies a 0 = 3 a_0 = 3 , a 1 = 4 a_1 = 4 , and

a n + 2 = a n + 1 a n + a n + 1 2 1 a n 2 1 \large\ { a }_{ n+2 } = { a }_{ n+1 }{ a }_{ n } + \left\lceil \sqrt { { a }_{ n+1 }^{ 2 } - 1 } \sqrt { { a }_{ n }^{ 2 } - 1 } \right\rceil

for n 0 n \ge 0 .

Evaluate the sum :

n = 0 ( a n + 3 a n + 2 a n + 2 a n + a n + 1 a n + 3 a n a n + 1 ) . \large\ \displaystyle \sum _{ n=0 }^{ \infty }{ \left( \frac { { a }_{ n+3 } }{ { a }_{ n+2 } } - \frac { { a }_{ n+2 } }{ { a }_{ n } } + \frac { { a }_{ n+1 } }{ { a }_{ n+3 } } - \frac { { a }_{ n } }{ { a }_{ n+1 } } \right) } .

19 64 \frac { 19 }{ 64 } 14 69 \frac { 14 }{ 69 } 13 67 \frac { 13 }{ 67 } 17 67 \frac { 17 }{ 67 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aaghaz Mahajan
Jun 28, 2020

@Priyanshu Mishra Could you please post your solution?

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...