Hello IMOment 3

Algebra Level 5

( a 2 b c ) ( b 2 c a ) ( c 2 a b ) \large (a^2-bc)(b^2-ca)(c^2-ab)

Let a a , b b and c c are real numbers such that a 2 + b 2 + c 2 = 1 a^2+b^2+c^2=1 .

Let M M be the maximum value of above expression. Find 1000 M \left\lfloor 1000M\right\rfloor .

Notation : \lfloor \cdot \rfloor denotes the floor function .


The answer is 125.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kushal Dey
May 16, 2021

The equation a²+b²+c²=1 is not a homogeneous expression in a,b,c, thus we can put (a,b,c)=( x x ² + y ² + z ² \frac {x}{\sqrt{x²+y²+z²}} , y x ² + y ² + z ² \frac {y}{\sqrt{x²+y²+z²}} , z x ² + y ² + z ² \frac {z}{\sqrt{x²+y²+z²}} ) to satisfy it. Thus our expression (a²-bc)(b²-ca)(c²-ab) becomes ( x ² y z ) ( y ² z x ) ( z ² x y ) ( x ² + y ² + z ² ) ³ \frac {(x²-yz)(y²-zx)(z²-xy)}{(x²+y²+z²)³} . Now we notice that, (x+y+z)²>=0 =>3(x²+y²+z²)>=2{(x²-yz)+(y²-zx)+(z²-xy)}. Equality holds when x+y+z=0, but then
(x-y)(x+y+z)=0 => x²-yz=y²-zx...and so on.
But if a=b=c then a+b+c=3 a b c 3 \sqrt[3]{abc} . Thus we have,
3 2 \frac{3}{2} (x²+y²+z²)>=3 ( x ² y z ) ( y ² z x ) ( z ² x y ) 3 \sqrt[3]{(x²-yz)(y²-zx)(z²-xy)} by combining our previous inequalities. Thus we can cube the inequality and divide it by (x²+y²+z²)³ and see that, (a²-bc)(b²-ca)(c²-ab)<=⅛. Equality holds when a+b+c=0.


Let k = a + b + c , k 3 k=a+b+c, |k|\leq \sqrt{3} . Then,

( a 2 b c ) ( b 2 a c ) ( c 2 a b ) = = ( 1 ( a 2 + a b + b 2 ) ) ( 1 ( a 2 + a c + c 2 ) ) ( 1 ( b 2 + b c + c 2 ) ) = = ( 1 1 2 ( a 2 + ( b + c ) 2 + 1 ) ) ( 1 1 2 ( ( a + c ) 2 b 2 + 1 ) ) ( 1 1 2 ( ( a + b ) 2 c 2 + 1 ) ) = = 1 8 ( ( a b c ) ( a + b + c ) + 1 ) ( ( a + b c ) ( a + b + c ) + 1 ) ( 1 ( a + b c ) ( a + b + c ) ) = = 1 8 ( k ( 2 a k ) + 1 ) ( k ( 2 b k ) + 1 ) ( k ( 2 c k ) + 1 ) 1 8 ( 1 3 ( 3 k 2 ) ) 3 1 8 \left(a^2-b c\right) \left(b^2-a c\right) \left(c^2-a b\right)==\left(1-\left(a^2+a b+b^2\right)\right) \left(1-\left(a^2+a c+c^2\right)\right) \left(1-\left(b^2+b c+c^2\right)\right)==\left(1-\frac{1}{2} \left(-a^2+(b+c)^2+1\right)\right) \left(1-\frac{1}{2} \left((a+c)^2-b^2+1\right)\right) \left(1-\frac{1}{2} \left((a+b)^2-c^2+1\right)\right)==\frac{1}{8} ((a-b-c) (a+b+c)+1) ((-a+b-c) (a+b+c)+1) (1-(a+b-c) (a+b+c))==\frac{1}{8} (k (2 a-k)+1) (k (2 b-k)+1) (k (2 c-k)+1)\leq \frac{1}{8} \left(\frac{1}{3} \left(3-k^2\right)\right)^3\leq \frac{1}{8}

where we used AM-GM. It is easy to find an example where the maximum is achieved.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...