( a 2 − b c ) ( b 2 − c a ) ( c 2 − a b )
Let a , b and c are real numbers such that a 2 + b 2 + c 2 = 1 .
Let M be the maximum value of above expression. Find ⌊ 1 0 0 0 M ⌋ .
Notation : ⌊ ⋅ ⌋ denotes the floor function .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let k = a + b + c , ∣ k ∣ ≤ 3 . Then,
( a 2 − b c ) ( b 2 − a c ) ( c 2 − a b ) = = ( 1 − ( a 2 + a b + b 2 ) ) ( 1 − ( a 2 + a c + c 2 ) ) ( 1 − ( b 2 + b c + c 2 ) ) = = ( 1 − 2 1 ( − a 2 + ( b + c ) 2 + 1 ) ) ( 1 − 2 1 ( ( a + c ) 2 − b 2 + 1 ) ) ( 1 − 2 1 ( ( a + b ) 2 − c 2 + 1 ) ) = = 8 1 ( ( a − b − c ) ( a + b + c ) + 1 ) ( ( − a + b − c ) ( a + b + c ) + 1 ) ( 1 − ( a + b − c ) ( a + b + c ) ) = = 8 1 ( k ( 2 a − k ) + 1 ) ( k ( 2 b − k ) + 1 ) ( k ( 2 c − k ) + 1 ) ≤ 8 1 ( 3 1 ( 3 − k 2 ) ) 3 ≤ 8 1
where we used AM-GM. It is easy to find an example where the maximum is achieved.
Problem Loading...
Note Loading...
Set Loading...
The equation a²+b²+c²=1 is not a homogeneous expression in a,b,c, thus we can put (a,b,c)=( x ² + y ² + z ² x , x ² + y ² + z ² y , x ² + y ² + z ² z ) to satisfy it. Thus our expression (a²-bc)(b²-ca)(c²-ab) becomes ( x ² + y ² + z ² ) ³ ( x ² − y z ) ( y ² − z x ) ( z ² − x y ) . Now we notice that, (x+y+z)²>=0 =>3(x²+y²+z²)>=2{(x²-yz)+(y²-zx)+(z²-xy)}. Equality holds when x+y+z=0, but then
(x-y)(x+y+z)=0 => x²-yz=y²-zx...and so on.
But if a=b=c then a+b+c=3 3 a b c . Thus we have,
2 3 (x²+y²+z²)>=3 3 ( x ² − y z ) ( y ² − z x ) ( z ² − x y ) by combining our previous inequalities. Thus we can cube the inequality and divide it by (x²+y²+z²)³ and see that, (a²-bc)(b²-ca)(c²-ab)<=⅛. Equality holds when a+b+c=0.