Hello trig, my old friend

Geometry Level 5

If the maximum of S = sin α sin β cos γ + sin β sin γ cos α + sin γ sin α cos β S=\sqrt{\sin \alpha \sin \beta \cos \gamma}+\sqrt{\sin \beta \sin \gamma \cos \alpha}+\sqrt{\sin \gamma \sin \alpha \cos \beta} can be represented as a b c \frac{a\sqrt{b}}{c} , where α \alpha , β \beta and γ \gamma are angles of an acute-angle triangle, a a and c c irreducible and b b square-free , compute a + b + c a+b+c .


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Using C a u c h y S c h w a r z I n e q u a l i t y Cauchy-Schwarz \space Inequality we can easily show that r . m . s . v a l u e \textcolor{#3D99F6}{r.m.s. value} of n n positve numbers is greater than or equal to their a r i t h m e t i c m e a n \space \textcolor{#3D99F6}{arithmetic \space mean}

i.e. a 1 2 + a 2 2 + a 3 2 . . . a n 2 n a 1 + a 2 + a 3 . . . a n n \quad \LARGE \sqrt{\frac{a_{1}^{2} + a_2^2 + a_3^2 ... a_n^2}{n}} \geq \frac{a_1 + a_2 + a_3 ... a_n}{n}

Now taking n = 3 n = 3 and a 1 = sin α sin β cos γ , a 2 = sin β sin γ cos α , a 3 = sin γ sin α cos β a_1 = \sqrt{\sin\alpha\sin\beta\cos\gamma} , \space a_2 = \sqrt{\sin\beta\sin\gamma\cos\alpha} , \space a_3 = \sqrt{\sin\gamma\sin\alpha\cos\beta} We have

S 3 sin α sin β cos γ + sin β sin γ cos α + sin γ sin α cos β 3 Eq 1 \LARGE \frac{S}{3} \leq \sqrt{\frac{\sin\alpha\sin\beta\cos\gamma + \sin\beta\sin\gamma\cos\alpha + \sin\gamma\sin\alpha\cos\beta}{3}} \quad \small \cdots \text{Eq 1}

Now to find maximum value of S S we have to find maximum value of RHS . Let A A denote sin α sin β cos γ + sin β sin γ cos α + sin γ sin α cos β \sin\alpha\sin\beta\cos\gamma + \sin\beta\sin\gamma\cos\alpha + \sin\gamma\sin\alpha\cos\beta

Using properties of sin and cos \sin \text{and} \cos and taking α + β + γ = 18 0 \alpha + \beta + \gamma = 180^\circ , we can reduce A A to

A = 1 + cos α cos β cos γ A = 1+ \cos\alpha\cos\beta\cos\gamma

Let y = 2 cos α cos β cos γ Eq 2 y = 2\cos\alpha\cos\beta\cos\gamma \quad \cdots \text{Eq 2} \\ y = [ cos ( α β ) + cos ( α + β ) ] cos γ = [ cos ( α β ) cos γ ] cos γ \Rightarrow y = [\cos(\alpha - \beta) + \cos(\alpha + \beta)]\cos\gamma = [\cos(\alpha - \beta) - \cos\gamma]\cos\gamma \\ cos 2 γ cos ( α β ) cos γ + y = 0 \Rightarrow \boxed{\cos^2\gamma - \cos(\alpha - \beta)\cos\gamma + y = 0} \\ This is quadratic equation in cos γ \cos\gamma . For cos γ \cos\gamma to be real , discriminant should be greater than or equal to 0 i . e . \quad i.e. \\ cos 2 ( α β ) 4 y 0 \cos^2(\alpha - \beta) - 4y \geq 0 \\ y cos 2 ( α β ) 4 1 4 \Rightarrow \large y \leq \frac{\cos^2(\alpha - \beta)}{4} \leq \frac{1}{4}

Now from Eq 2 we have 2 ( A 1 ) 1 4 2(A - 1) \leq \frac{1}{4} A 9 8 \\ \Rightarrow A \leq \frac{9}{8}

From Eq 1 we have ,

S 3 A 3 9 / 8 3 = 6 4 S 3 6 4 \frac{S}{3} \leq \sqrt{\frac{A}{3}} \leq \sqrt{\frac{9/8}{3}} = \frac{\sqrt{6}}{4} \\ \Rightarrow S \leq \frac{3\sqrt{6}}{4}

So maximum value of S S is 3 6 4 \boxed{\frac{3\sqrt{6}}{4}} . Comparing with a b c \frac{a\sqrt{b}}{c} we get

a = 3 , b = 6 , c = 4 a = 3 , b = 6 , c = 4

So a + b + c = 13 a + b + c = \boxed{13}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...