Help Me Out!

Calculus Level 4

If

a n = 0 π / 2 ( 1 sin x ) n sin 2 x d x \large a_n=\int_{0}^{{\pi}/ {2}} (1-\sin{x})^n \sin{2x} \, dx

, then

lim m n = 1 m a n n \large \lim_{m\to\infty} \sum_{n=1}^{m} \frac{a_n}{n}

equals?

3 2 \frac{3}{2} 4 3 \frac{4}{3} 1 2 \frac{1}{2} None of these choices 1 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aareyan Manzoor
Mar 5, 2016

nice problem.we need to first write the integral as a n = 2 0 π / 2 ( 1 sin ( x ) ) n sin ( x ) cos ( x ) dx a_n=2\int_0^{\pi/2} (1-\sin(x))^n \sin(x)\cos(x) \text{dx} We make a simple u-sub of { u = sin ( x ) du = cos ( x ) dx 0 π / 2 0 1 \begin{cases} u=\sin(x)\\ \text{du}=\cos(x)\text{dx}\\\mid_0^{\pi/2}\to \mid_0^1\end{cases} so the integral is now a n = 2 0 1 ( 1 u ) n u du = 2 B ( n + 1 , 2 ) = 2 Γ ( n + 1 ) Γ ( 2 ) Γ ( n + 3 ) = 2 ( n + 1 ) ( n + 2 ) a_n=2\int_0^1 (1-u)^nu \text{du}=2\mathcal{B}(n+1,2)=2\dfrac{\Gamma(n+1)\Gamma(2)}{\Gamma(n+3)}=\dfrac{2}{(n+1)(n+2)} where the beta function is used.so the summation is n > 0 2 n ( n + 1 ) ( n + 2 ) = n > 0 ( 1 n 1 n + 1 1 n + 1 + 1 n + 2 ) = 1 1 2 = 1 2 \sum_{n>0} \dfrac{2}{n(n+1)(n+2)}=\sum_{n>0} \left(\dfrac{1}{n}-\dfrac{1}{n+1}-\dfrac{1}{n+1}+\dfrac{1}{n+2}\right)\\=1-\dfrac{1}{2}=\boxed{\dfrac{1}{2}}

You don't have to use the beta or the gamma function if you define 'u' as 1-sin(x) instead of sin(x). You will get the same answer and with a more convenient method. Great solution btw!

Zsolt Fazekas - 5 years, 3 months ago

lim m n = 1 m a n n \displaystyle \lim _{ m\rightarrow \infty }{ \sum _{ n=1 }^{ m }{ \frac { { a }_{ n } }{ n } } }

= lim m n = 1 m 1 n ( 0 π 2 ( 1 sin x ) n sin 2 x d x ) \displaystyle =\lim _{ m\rightarrow \infty }{ \sum _{ n=1 }^{ m }{ \frac { 1 }{ n } \left( \int _{ 0 }^{ \frac { \pi }{ 2 } }{ \left( 1-\sin { x } \right) ^{ n }\sin { 2x } dx } \right) } }

= ( 0 π 2 lim m n = 1 m 1 n ( 1 sin x ) n sin 2 x d x ) \displaystyle = \left( \int _{ 0 }^{ \frac { \pi }{ 2 } } \lim _{ m\rightarrow \infty }{ \sum _{ n=1 }^{ m }} { \frac { 1 }{ n }\left( 1-\sin { x } \right) ^{ n }\sin { 2x } dx } \right)

= ( 0 π 2 ln sin x sin 2 x d x ) \displaystyle = \left( \int _{ 0 }^{ \frac { \pi }{ 2 }} {- \ln { \sin { x } } \sin { 2x } dx } \right)

= ( 0 π 2 ln sin x d sin 2 x ) \displaystyle =- \left( \int _{ 0 }^{ \frac { \pi }{ 2 }} { \ln { \sin { x } } d\sin^{2} { x }} \right)

= ( sin 2 x ln sin x sin 2 x 2 ) \displaystyle =-\left( \sin ^{ 2 }{ x } \ln { \sin { x } } -\frac { \sin ^{ 2 }{ x } }{ 2 } \right ) from 0 to 1

= ( 1 2 0 ) = 1 2 \displaystyle =-\left( -\frac { 1 }{ 2 } -0 \right) =\frac{1}{2}

This is a very unusual technique. Thanks for sharing!

Pi Han Goh - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...