If
a n = ∫ 0 π / 2 ( 1 − sin x ) n sin 2 x d x
, then
m → ∞ lim n = 1 ∑ m n a n
equals?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
You don't have to use the beta or the gamma function if you define 'u' as 1-sin(x) instead of sin(x). You will get the same answer and with a more convenient method. Great solution btw!
m → ∞ lim n = 1 ∑ m n a n
= m → ∞ lim n = 1 ∑ m n 1 ( ∫ 0 2 π ( 1 − sin x ) n sin 2 x d x )
= ( ∫ 0 2 π m → ∞ lim n = 1 ∑ m n 1 ( 1 − sin x ) n sin 2 x d x )
= ( ∫ 0 2 π − ln sin x sin 2 x d x )
= − ( ∫ 0 2 π ln sin x d sin 2 x )
= − ( sin 2 x ln sin x − 2 sin 2 x ) from 0 to 1
= − ( − 2 1 − 0 ) = 2 1
This is a very unusual technique. Thanks for sharing!
Problem Loading...
Note Loading...
Set Loading...
nice problem.we need to first write the integral as a n = 2 ∫ 0 π / 2 ( 1 − sin ( x ) ) n sin ( x ) cos ( x ) dx We make a simple u-sub of ⎩ ⎪ ⎨ ⎪ ⎧ u = sin ( x ) du = cos ( x ) dx ∣ 0 π / 2 → ∣ 0 1 so the integral is now a n = 2 ∫ 0 1 ( 1 − u ) n u du = 2 B ( n + 1 , 2 ) = 2 Γ ( n + 3 ) Γ ( n + 1 ) Γ ( 2 ) = ( n + 1 ) ( n + 2 ) 2 where the beta function is used.so the summation is n > 0 ∑ n ( n + 1 ) ( n + 2 ) 2 = n > 0 ∑ ( n 1 − n + 1 1 − n + 1 1 + n + 2 1 ) = 1 − 2 1 = 2 1